When people are walking, they will produce gait signals and different people will produce different gait signals. The research of the gait signal complexity is really of great significance for medicine. By calculating people's gait signal complexity, we can assess a person's health status and thus timely detect and diagnose diseases. In this study, the Jensen-Shannon divergence (JSD), the method of complexity analysis, was used to calculate the complexity of gait signal in the healthy elderly, healthy young people and patients with Parkinson's disease. Then we detected the experimental data by variance detection. The results showed that the difference among the complexity of the three gait signals was great. Through this research, we have got gait signal complexity range of patients with Parkinson's disease, the healthy elderly and healthy young people, respectively, which would provide an important basis for clinical diagnosis.
Citation:
WANGPeicun, WANGJun. Complexity Analysis of Gait Signal Based on Jensen-Shannon Divergence. Journal of Biomedical Engineering, 2014, 31(3): 583-585. doi: 10.7507/1001-5515.20140109
Copy
Copyright © the editorial department of Journal of Biomedical Engineering of West China Medical Publisher. All rights reserved
1. |
苏开娜,刘玉栋,马丽.身份识别中步态特征的提取[J].北京工业大学学报,2005,31(4):388-393.
|
2. |
贲晛烨,徐森,王科俊.行人步态的特征表达及识别综述[J].模式识别与人工智能,2012,25(1):71-81.
|
3. |
胡雪艳,恽晓平.步态分析在临床中的应用[J].中国康复理论与实践,2003,9(11):677-679.
|
4. |
罗松江,丘水生,陈旭.一种混沌伪随机序列复杂度分析方法[J].华南理工大学学报:自然科学版,2010,38(1):18-21.
|
5. |
LIN J H. Divergence measures based on the Shannon entropy[J]. IEEE Trans Inf Theor, 2006, 37(1):145-151.
|
6. |
LAMBERTI P W, MAJTEY A P. Non-logarithmic Jensen-Shannon divergence[J]. Physica A, 2003, 329(1-2):81-90.
|
7. |
ROSSO O A, LARRONDO H A, MARTIN M T, et al. Distinguishing noise from chaos[J]. Phys Rev Lett, 2007, 99(15):154102.
|
8. |
张雨.符号化时间序列分析[J].湘潭矿业学院学报,2004,19(1):75-79.
|
9. |
向馗,蒋静坪.时间序列的符号化方法研究[J].模式识别与人工智能,2007,20(2):154-161.
|
10. |
刘小峰,俞文莉.基于符号动力学的认知事件相关电位的复杂度分析[J].物理学报,2008,57(4):2587-2594.
|
11. |
孙克辉,贺少波,盛利元.基于强度统计算法的混沌序列复杂度分析[J].物理学报,2011,60(2):0205051-7.
|
12. |
MARTIN T M, PLASTINO A, ROSSO A O. Generalized statistical complexity measures:Geometrical and analytical properties[J]. Physica A, 2006, 369(2):439-462.
|
13. |
马斌荣,陈卉.医学科研中的统计方法[M].北京:科学出版社,2005:44-47.
|
- 1. 苏开娜,刘玉栋,马丽.身份识别中步态特征的提取[J].北京工业大学学报,2005,31(4):388-393.
- 2. 贲晛烨,徐森,王科俊.行人步态的特征表达及识别综述[J].模式识别与人工智能,2012,25(1):71-81.
- 3. 胡雪艳,恽晓平.步态分析在临床中的应用[J].中国康复理论与实践,2003,9(11):677-679.
- 4. 罗松江,丘水生,陈旭.一种混沌伪随机序列复杂度分析方法[J].华南理工大学学报:自然科学版,2010,38(1):18-21.
- 5. LIN J H. Divergence measures based on the Shannon entropy[J]. IEEE Trans Inf Theor, 2006, 37(1):145-151.
- 6. LAMBERTI P W, MAJTEY A P. Non-logarithmic Jensen-Shannon divergence[J]. Physica A, 2003, 329(1-2):81-90.
- 7. ROSSO O A, LARRONDO H A, MARTIN M T, et al. Distinguishing noise from chaos[J]. Phys Rev Lett, 2007, 99(15):154102.
- 8. 张雨.符号化时间序列分析[J].湘潭矿业学院学报,2004,19(1):75-79.
- 9. 向馗,蒋静坪.时间序列的符号化方法研究[J].模式识别与人工智能,2007,20(2):154-161.
- 10. 刘小峰,俞文莉.基于符号动力学的认知事件相关电位的复杂度分析[J].物理学报,2008,57(4):2587-2594.
- 11. 孙克辉,贺少波,盛利元.基于强度统计算法的混沌序列复杂度分析[J].物理学报,2011,60(2):0205051-7.
- 12. MARTIN T M, PLASTINO A, ROSSO A O. Generalized statistical complexity measures:Geometrical and analytical properties[J]. Physica A, 2006, 369(2):439-462.
- 13. 马斌荣,陈卉.医学科研中的统计方法[M].北京:科学出版社,2005:44-47.