1. |
Wilson D M, Cookson M R, van den Bosch L, et al. Hallmarks of neurodegenerative diseases. Cell, 2023, 186(4): 693-714..
|
2. |
Benatar M, Wuu J, McHutchison C, et al. Preventing amyotrophic lateral sclerosis: insights from pre-symptomatic neurodegenerative diseases. Brain, 2022, 145(1): 27-44..
|
3. |
Jia L, Du Y, Chu L, et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study. Lancet Public Health, 2020, 5(12): E661-E671..
|
4. |
Joza S, Hu M T, Jung K Y, et al. Progression of clinical markers in prodromal Parkinson’s disease and dementia with Lewy bodies: a multicentre study. Brain, 2023, 146(8): 3258-3272..
|
5. |
Endo M, Nerrise F, Zhao Q, et al. Data-driven discovery of movement-linked heterogeneity in neurodegenerative diseases. Nat Mach Intell, 2024, 6(9): 1034-1045..
|
6. |
Yozevitch R, Frenkel-Toledo S, Elion O, et al. Cost-effective and efficient solutions for the assessment and practice of upper extremity motor performance. IEEE Sens J, 2023, 23(19): 23494-23499..
|
7. |
刘程林, 郝卫亚, 霍波. 运动生物力学发展现状及挑战. 力学进展, 2023, 53(1): 198-238..
|
8. |
高经纬, 马超, 苏鸿, 等. 基于改进机器学习算法的步态识别与预测研究. 生物医学工程学杂志, 2022, 39(1): 103-111..
|
9. |
Arizpe-Gomez P, Harms K, Janitzky K, et al. Towards automated self-administered motor status assessment: validation of a depth camera system for gait feature analysis. Biomed Signal Process Control, 2024, 87: 105352..
|
10. |
Gholami M, Ward R, Mahal R, et al. Automatic labeling of Parkinson’s disease gait videos with weak supervision. Med Image Anal, 2023, 89: 102871..
|
11. |
Park D J, Lee J W, Lee M J, et al. Evaluation for Parkinsonian bradykinesia by deep learning modeling of kinematic parameters. J Neural Transm, 2021, 128(2): 181-189..
|
12. |
Vicedo C, Nieto-Reyes A, Bringas S, et al. Automatic apraxia detection using deep convolutional neural networks and similarity methods. Mach Vision Appl, 2023, 34(4): 60..
|
13. |
Negin F, Rodriguez P, Koperski M, et al. PRAXIS: Towards automatic cognitive assessment using gesture recognition. Expert Syst Appl, 2018, 106: 21-35..
|
14. |
Hayashida T, Sugiyama T, Sakai K, et al. Validation and discussion of severity evaluation and disease classification using tremor video. Electronics, 2023, 12(7): 1674..
|
15. |
Zeng Q, Liu P, Yu N, et al. Video-based quantification of gait impairments in Parkinson’s disease using skeleton-silhouette fusion convolution network. IEEE Trans Neural Syst Rehabil Eng, 2023, 31: 2912-2922..
|
16. |
Sabo A, Mehdizadeh S, Iaboni A, et al. Estimating Parkinsonism severity in natural gait videos of older adults with dementia. IEEE J Biomed Health Inf, 2022, 26(5): 2288-2298..
|
17. |
Yu B X B, Liu Y, Chan K C C, et al. Skeleton-based human action evaluation using graph convolutional network for monitoring Alzheimer’s progression. Pattern Recognit, 2021, 119: 108095..
|
18. |
Bringas S, Salomon S, Duque R, et al. Alzheimer’s disease stage identification using deep learning models. J Biomed Inform, 2020, 109: 103514..
|
19. |
Francisco Pedrero-Sanchez J, Belda-Lois J, Serra-Ano P, et al. Classification of healthy, Alzheimer and Parkinson populations with a multi-branch neural network. Biomed Signal Process Control, 2022, 75: 103617..
|
20. |
Liu W, Lin X, Chen X, et al. Vision-based estimation of MDS-UPDRS scores for quantifying Parkinson’s disease tremor severity. Med Image Anal, 2023, 85: 102754..
|
21. |
Morinan G, Dushin Y, Sarapata G, et al. Computer vision quantification of whole-body Parkinsonian bradykinesia using a large multi-site population. NPJ Parkinsons Dis, 2023, 9(1): 10..
|
22. |
Guo R, Sun J, Zhang C, et al. A self-supervised metric learning framework for the arising-from-chair assessment of Parkinsonians with graph convolutional networks. IEEE Trans Circuits Syst Video Technol, 2022, 32(9): 6461-6471..
|
23. |
Guo R, Shao X, Zhang C, et al. Multi-scale sparse graph convolutional network for the assessment of Parkinsonian gait. IEEE Trans Multimedia, 2022, 24: 1583-1594..
|
24. |
Guo R, Sun J, Zhang C, et al. A contrastive graph convolutional network for toe-tapping assessment in Parkinson’s disease. IEEE Trans Circuits Syst Video Technol, 2022, 32(12): 8864-8874..
|
25. |
Guo R, Li H, Zhang C, et al. A tree-structure-guided graph convolutional network with contrastive learning for the assessment of Parkinsonian hand movements. Med Image Anal, 2022, 81: 102560..
|
26. |
Li H, Shao X, Zhang C, et al. Automated assessment of Parkinsonian finger-tapping tests through a vision-based fine-grained classification model. Neurocomputing, 2021, 441: 260-271..
|
27. |
Amprimo G, Masi G, Priano L, et al. Assessment tasks and virtual exergames for remote monitoring of Parkinson’s disease: an integrated approach based on Azure Kinect. Sensors, 2022, 22(21): 8173..
|
28. |
Luksys D, Jatuzis D, Jonaitis G, et al. Application of continuous relative phase analysis for differentiation of gait in neurodegenerative disease. Biomed Signal Process Control, 2021, 67: 102558..
|
29. |
Iseki C, Suzuki S, Fukami T, et al. Fluctuations in upper and lower body movement during walking in normal pressure hydrocephalus and Parkinson’s disease assessed by motion capture with a smartphone application, TDPT-GT. Sensors, 2023, 23(22): 9263..
|
30. |
Lassmann C, Ilg W, Schneider M, et al. Specific gait changes in prodromal hereditary spastic paraplegia type 4: preSPG4 study. Mov Disord, 2022, 37(12): 2417-2426..
|
31. |
Peng K, Xie L, Hong R, et al. Early-onset and late-onset Parkinson’s disease exhibit a different profile of gait and posture features based on the Kinect. Neurol Sci, 2023, 45: 139-147..
|
32. |
Vasylenko O, Gorecka M M, Waterloo K, et al. Reduction in manual asymmetry and decline in fine manual dexterity in right-handed older adults with mild cognitive impairment. Laterality, 2022, 27(6): 581-604..
|
33. |
Zhao Y, Liu Y, Lu W, et al. Intelligent IoT anklets for monitoring the assessment of Parkinson’s diseases. IEEE Sens J, 2023, 23(24): 31523-31536..
|
34. |
Yang N, Liu D, Liu T, et al. Automatic detection pipeline for accessing the motor severity of Parkinson’s disease in finger tapping and postural stability. IEEE Access, 2022, 10: 66961-66973..
|
35. |
Iseki C, Hayasaka T, Yanagawa H, et al. Artificial intelligence distinguishes pathological gait: the analysis of markerless motion capture gait data acquired by an ios application (TDPT-GT). Sensors, 2023, 23(13): 6217..
|
36. |
Ma L, Shi W, Chen C, et al. Remote scoring models of rigidity and postural stability of Parkinson’s disease based on indirect motions and a low-cost RGB algorithm. Front Aging Neurosci, 2023, 15: 1034376..
|
37. |
Amprimo G, Rechichi I, Ferraris C, et al. Objective assessment of the finger tapping task in Parkinson’s disease and control subjects using Azure Kinect and machine learning// 2023 IEEE 36th International Symposium on Computer-Based Medical Systems (CBMS). L’Aquila: IEEE, 2023: 640-645..
|
38. |
Hoang T, Zehni M, Xu H, et al. Towards a comprehensive solution for a vision-based digitized neurological examination. IEEE J Biomed Health, 2022, 26(8): 4020-4031..
|
39. |
Guarin D L, Taati B, Abrahao A, et al. Video-based facial movement analysis in the assessment of bulbar amyotrophic lateral sclerosis: clinical validation. J Speech Lang Hear Res, 2022, 65(12): 4667-4678..
|
40. |
孙玉波, 刘培培, 杨宇辰, 等. 一种基于二维视频的运动障碍量化评估方法与临床应用研究. 生物医学工程学杂志, 2023, 40(3): 499-507..
|
41. |
Dai H, Cai G, Lin Z, et al. Validation of inertial sensing-based wearable device for tremor and bradykinesia quantification. IEEE J Biomed Health Inform, 2021, 25(4): 997-1005..
|
42. |
Dadashzadeh A, Whone A, Rolinski M, et al. Exploring motion boundaries in an end-to-end network for vision-based Parkinson’s severity assessment// 10th International Conference on Pattern Recognition Applications and Methods (ICPRAM). Setubal: SCITEPRESS, 2021: 89-97..
|
43. |
Prakash P, Kaur R, Levy J, et al. A deep learning approach for grading of motor impairment severity in Parkinson’s disease// 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). Sydney: IEEE, 2023: 1-4..
|
44. |
Kaur R, Motl R W W, Sowers R, et al. A vision-based framework for predicting multiple sclerosis and Parkinson’s disease gait dysfunctions-a deep learning approach. IEEE J Biomed Health Inform, 2023, 27(1): 190-201..
|
45. |
Lu M, Zhao Q, Poston K L, et al. Quantifying Parkinson’s disease motor severity under uncertainty using MDS-UPDRS videos. Med Image Anal, 2021, 73: 102179..
|
46. |
Pedrero-Sánchez J F, Belda-Lois J M, Serra-Añó P, et al. Classification of Parkinson’s disease stages with a two-stage deep neural network. Front Aging Neurosci, 2023, 15: 1152917..
|
47. |
Zeng Q, Liu P, Bai Y, et al. SlowFast GCN network for quantification of Parkinsonian gait using 2D videos// 2022 12th International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). Baishan: IEEE, 2022: 474-479..
|
48. |
Zhang J, Lim J, Kim M, et al. WM-STGCN: a novel spatiotemporal modeling method for parkinsonian gait recognition. Sensors, 2023, 23(10): 4980..
|
49. |
Chandrabhatla A S, Pomeraniec I J, Ksendzovsky A. Co-evolution of machine learning and digital technologies to improve monitoring of Parkinson’s disease motor symptoms. NPJ Digit Med, 2022, 5(1): 32..
|
50. |
Xu B, Yang G. Interpretability research of deep learning: a literature survey. Inf Fusion, 2025, 115: 102721..
|