1. |
Qudus M S, Cui X, Tian M, et al. The prospective outcome of the monkeypox outbreak in 2022 andcharacterization of monkeypox disease immunobiology. Frontiers in Cellular and Infection Microbiology, 2023, 13: 1196699.
|
2. |
Rahimi F S, Afaghi S, Tarki F E, et al. The historical epidemiology of human monkeypox: a reviewof evidence from the 1970 emergence to the 2022 outbreak. Tohoku Journal of Experimental Medicine, 2022, 258(4): 243-255.
|
3. |
Chew E J C, Tan P H. Evolutionary changes in pathology and our understanding of disease. Pathobiology, 2023, 90(3): 209-218.
|
4. |
Ferro P, Boni R, Slart R H, et al. Imaging of endocarditis and cardiac device-related infections: an update. Seminars in Nuclear Medicine, 2023, 53(2): 184-198.
|
5. |
Kamel H, Ramirez-Arcos S, McDonald C, et al. The international experience of bacterial screen testing of platelet components with automated microbial detection systems: an update. Vox Sanguinis, 2022, 117(5): 647-655.
|
6. |
Chandra P. Personalized biosensors for point-of-care diagnostics: from bench to bedside applications. Nanotheranostics, 2023, 7(2): 210-215.
|
7. |
Chen L, Guo X, Sun X, et al. Porous structural microfluidic device for biomedical diagnosis: a review. Micromachines, 2023, 14(3): 547.
|
8. |
Wang L, Cheng Y, Gopalan S, et al. Review and perspective: gas separation and discrimination technologies for current gas sensors in environmental applications. ACS Sensors, 2023, 8(4): 1373-1390.
|
9. |
Aryal P, Hefner C, Martinez B, et al. Microfluidics in environmental analysis: advancements, challenges, and future prospects for rapid and efficient monitoring. Lab on a Chip, 2024, 24(5): 1175-1206.
|
10. |
Shi L, Li Y, Jia C, et al. An overview of fluorescent microfluidics into revealing the mystery of food safety analysis: mechanisms and recent applications. Trends in Food Science and Technology, 2023, 138: 100-115.
|
11. |
Liang M, Zhang G, Song J, et al. Paper-based microfluidic chips for food hazard factor detection: fabrication, modification, and application. Foods, 2023, 12(22): 4107.
|
12. |
Ibrahim O A, Navarro-Segarra M, Sadeghi P, et al. Microfluidics for electrochemical energy conversion. Chemical Reviews, 2022, 122(7): 7236-7266.
|
13. |
Kumari M, Gupta V, Kumar N, et al. Microfluidics-based nano biosensors for healthcare monitoring. Molecular Biotechnology, 2024, 66(3): 378-401.
|
14. |
Xie M, Zhan Z, Li Y, et al. Functional microfluidics: theory, microfabrication, and applications. International Journal of Extreme Manufacturing, 2024, 6(3): 32005.
|
15. |
Juang Y J, Chiu Y J. Fabrication of polymer microfluidics: an overview. Polymers, 2022, 14(10): 2028.
|
16. |
Chen L, Yu L, Liu Y, et al. Space-time-regulated imaging analyzer for smart coagulation diagnosis. Cell Reports Medicine, 2022, 3(10): 100765.
|
17. |
Chen L, Yu L, Chen M, et al. A microfluidic hemostatic diagnostics platform: harnessing coagulation-induced adaptive-bubble behavioral perception. Cell Reports Medicine, 2023, 4(11): 101252.
|
18. |
Cui Y, Zhao J, Li H. Chromogenic mechanisms of colorimetric sensors based on gold nanoparticles. Biosensors, 2023, 13(8): 801.
|
19. |
Police Patil A V, Chuang Y S, Li C, et al. Recent advances in electrochemical immunosensors with nanomaterial assistance for signal amplification. Biosensors, 2023, 13(1): 125.
|
20. |
Yadav A K, Chan J. Activity-based bioluminescence probes for in vivo sensing applications. Current Opinion in Chemical Biology, 2023, 74: 102310.
|
21. |
Wang L, Li B, Wang J, et al. A rotary multi-positioned cloth/paper hybrid microfluidic device for simultaneous fluorescence sensing of mercury and lead ions by using ion imprinted technologies. Journal of Hazardous Materials, 2022, 428: 128165.
|
22. |
Yang L, Zhang Z, Wang X, et al. A microfluidic PET-based electrochemical glucose sensor. Micromachines, 2022, 13(4): 552.
|
23. |
Chinnamani M V, Hanif A, Kannan P K, et al. Soft microfiber-based hollow microneedle array for stretchable microfluidic biosensing patch with negative pressure-driven sampling. Biosensors and Bioelectronics, 2023, 237: 115468.
|
24. |
Mohan B, Kumar S, Xi H, et al. Fabricated metal-organic frameworks (MOFs) as luminescent and electrochemical biosensors for cancer biomarkers detection. Biosensors and Bioelectronics, 2022, 197: 113738.
|
25. |
Wang D, Liang Y, Su Y, et al. Sensitivity enhancement of cloth-based closed bipolar electrochemiluminescence glucose sensor via electrode decoration with chitosan/multi-walled carbon nanotubes/graphene quantum dots-gold nanoparticles. Biosensors and Bioelectronics, 2019, 130: 55-64.
|
26. |
Lu L, Zhang H, Wang Y, et al. Dissolution-enhanced luminescence enhanced digital microfluidics immunoassay for sensitive and automated detection of H5N1. ACS Applied Materials & Interfaces, 2023, 15(5): 6526-6535.
|
27. |
Song C, Yang Y, Tu X, et al. A smartphone-based fluorescence microscope with hydraulically driven optofluidic lens for quantification of glucose. IEEE Sensors Journal, 2021, 21(2): 1229-1235.
|
28. |
Zubkovs V, Wang H X, Schuergers N, et al. Bioengineering a glucose oxidase nano sensor for near-infrared continuous glucose monitoring. Nanoscale Advances, 2022, 4(11): 2420-2427.
|
29. |
Zhang M, Yang X, Ren M, et al. Microfluidic microwave biosensor based on biomimetic materials for the quantitative detection of glucose. Scientific Reports, 2022, 12(1): 15961.
|
30. |
Dungchai W, Chailapakul O, Henry C S, et al. Electrochemical detection for paper-based microfluidics. Analytical Chemistry, 2009, 81(14): 5821-5826.
|
31. |
Wang D, Liu C, Liang Y, et al. A simple and sensitive paper-based bipolar electrochemiluminescence biosensor for detection of oxidase-substrate biomarkers in serum. Journal of the Electrochemical Society, 2018, 165(9): B361-B369.
|
32. |
Oh C, Park B, Sundaresan V, et al. Closed bipolar electrode-enabled electrochromic sensing of multiple metabolites in whole blood. ACS Sensors, 2023, 8(1): 270-279.
|
33. |
Pinheiro T, Marques A C, Carvalho P, et al. Paper microfluidics and tailored gold nanoparticles for nonenzymatic, colorimetric multiplex biomarker detection. ACS Applied Materials & Interfaces, 2021, 13(3): 3576-3590.
|
34. |
Zhou Y, Cui A, Xiang D, et al. Point-of-care testing of four chronic disease biomarkers in blood based on a low cost and low system complexity microfluidic chip with integrated oxygen-sensitive membrane. Sensors and Actuators B: Chemical, 2024, 398: 134734.
|
35. |
Nuh S, Numnuam A, Thavarungkul P, et al. A novel microfluidic-based OMC-PEDOT-PSS composite electrochemical sensor for continuous dopamine monitoring. Biosensors, 2022, 13(1): 68.
|
36. |
Wagh M D, Hyderkhan R, Kumar P S, et al. Integrated microfluidic device with MXene enhanced laser-induced graphene bioelectrode for sensitive and selective electroanalytical detection of dopamine. IEEE Sensors Journal, 2022, 22(14): 14620-14627.
|
37. |
Niu J, Sun S, Liu P F, et al. Copper-based nanozymes: properties and applications in biomedicine. Journal of Inorganic Materials, 2023, 38(5): 489-502.
|
38. |
Le T N, Le X A, Tran T D, et al. Laccase-mimicking Mn-Cu hybrid nanoflowers for paper-based visual detection of phenolic neurotransmitters and rapid degradation of dyes. Journal of Nanobiotechnology, 2022, 20(1): 358.
|
39. |
Okhokhonin A V, Stepanova M I, Svalova T S, et al. A new electrocatalytic system based on copper (II) chloride and magnetic molecularly imprinted polymer nanoparticles in 3D printed microfluidic flow cell for enzymeless and low-potential cholesterol detection. Journal of Electroanalytical Chemistry, 2022, 924: 116853.
|
40. |
Sun X T, Zhang Y, Zheng D H, et al. Multitarget sensing of glucose and cholesterol based on janus hydrogel microparticles. Biosensors and Bioelectronics, 2017, 92: 81-86.
|