1. |
Kim S H, Kim K B, Choo H. New frontier in advanced dentistry: CBCT, intraoral scanner, sensors, and artificial intelligence in dentistry. Sensors (Basel), 2022, 22(8): 2942.
|
2. |
Kaasalainen T, Ekholm M, Siiskonen T, et al. Dental cone beam CT: An updated review. Phys Med, 2021, 88: 193-217.
|
3. |
Privalov M, Bullert B, Gierse J, et al. Effect of changing the acquisition trajectory of the 3D C-arm (CBCT) on image quality in spine surgery: experimental study using an artificial bone model. J Orthop Surg Res, 2023, 18(1): 924.
|
4. |
Han M, Kim H J, Choi J W, et al. Diagnostic usefulness of cone-beam computed tomography versus multi-detector computed tomography for sinonasal structure evaluation. Laryngoscope Investig Otolaryngol, 2022, 7(3): 662-670.
|
5. |
Vorbau R, Hulthen M, Omar A. Task-based image quality assessment of an intraoperative CBCT for spine surgery compared with conventional CT. Phys Med, 2024, 124: 103426.
|
6. |
Dartus J, Jacques T, Martinot P, et al. The advantages of cone-beam computerised tomography (CT) in pain management following total knee arthroplasty, in comparison with conventional multi-detector CT. Orthop Traumatol Surg Res, 2021, 107(3): 102874.
|
7. |
Doan M K, Long J R, Verhey E, et al. Cone-beam CT of the extremities in clinical practice. Radiographics, 2024, 44(3): e230143.
|
8. |
Grassi R, Guerra E, Berritto D. Bone fractures difficult to recognize in emergency: May be cone beam computed tomography (CBCT) the solution?. Radiol Med, 2023, 128(1): 1-5.
|
9. |
Jacques T, Morel V, Dartus J, et al. Impact of introducing extremity cone-beam CT in an emergency radiology department: A population-based study. Orthopaedics & traumatology, surgery & research, 2021, 107(2): 102834.
|
10. |
Xu D, Xie F, Zhang J, et al. Chinese expert consensus on cone-beam CT-guided diagnosis, localization and treatment for pulmonary nodules. Thorac Cancer, 2024, 15(7): 582-597.
|
11. |
Pogatchnik B P, Swenson K E, Duong D K, et al. Immediate and follow-up imaging findings after cone-beam CT-guided transbronchial lung cryobiopsy. Radiol Cardiothorac Imaging, 2023, 5(2): e220149.
|
12. |
Washio H, Ohira S, Funama Y, et al. Dose reduction and low-contrast detectability using iterative CBCT reconstruction algorithm for radiotherapy. Technol Cancer Res Treat, 2022, 21: 2091158096.
|
13. |
Kench P L, Rogers L, Esteves A, et al. Imaging prior to radiotherapy impacts in-vitro survival. Phys Imaging Radiat Oncol, 2020, 16: 138-143.
|
14. |
Galdi A, Farkas G, Gazdag-Hegyesi S, et al. Combined biological effects of CBCT and therapeutic X-ray dose on chromosomal aberrations of lymphocytes. Radiat Oncol, 2024, 19(1): 109.
|
15. |
Nahir C B, Citir M, Colak S, et al. Assessment of cone beam computed tomography use in pediatric and adolescent patients: a cross-sectional study. BMC Oral Health, 2024, 24(1): 1068.
|
16. |
Ding G X, Alaei P, Curran B, et al. Image guidance doses delivered during radiotherapy: Quantification, management, and reduction: Report of the AAPM Therapy Physics Committee Task Group 180. Med Phys, 2018, 45(5): e84-e99.
|
17. |
Jiang Z, Zhang Z, Chang Y, et al. Prior image-guided cone-beam computed tomography augmentation from under-sampled projections using a convolutional neural network. Quant Imaging Med Surg, 2021, 11(12): 4767-4780.
|
18. |
Olch A J, Alaei P. How low can you go? A CBCT dose reduction study. J Appl Clin Med Phys, 2021, 22(2): 85-89.
|
19. |
Park J C, Song B, Liang X, et al. A high-resolution cone beam computed tomography (HRCBCT) reconstruction framework for CBCT-guided online adaptive therapy. Med Phys, 2023, 50(10): 6490-6501.
|
20. |
Lee H, Sung J, Choi Y, et al. Mutual information-based non-local total variation denoiser for low-dose cone-beam computed tomography. Front Oncol, 2021, 11: 751057.
|
21. |
Teyfouri N, Rabbani H, Kafieh R, et al. An exact and fast CBCT reconstruction via Pseudo-Polar Fourier transform based discrete Grangeat’s formula. IEEE Trans Image Process, 2020, 29: 5832-5847.
|
22. |
Qi H, Long C, Li H, et al. Direct filter learning from iterative reconstructed images for high-quality analytical CBCT reconstruction using FDK-based neural network. IEEE Access, 2024, 12: 121495-121506.
|
23. |
Kim H, Choi J, Lee Y. Assessment of Feldkamp-Davis-Kress reconstruction parameters in overall image quality in cone beam computed tomography. Applied sciences, 2024, 14(16): 7058.
|
24. |
Azad R, Kazerouni A, Heidari M, et al. Advances in medical image analysis with vision Transformers: A comprehensive review. Med Image Anal, 2024, 91: 103000.
|
25. |
Chen X, Wang X, Zhang K, et al. Recent advances and clinical applications of deep learning in medical image analysis. Med Image Anal, 2022, 79: 102444.
|
26. |
Yaqub M, Jinchao F, Arshid K, et al. Deep learning-based image reconstruction for different medical imaging modalities. Comput Math Methods Med, 2022, 2022: 8750648.
|
27. |
Yu Z, Wen X, Yang Y. Reconstruction of sparse-view X-ray computed tomography based on adaptive total variation minimization. Micromachines (Basel), 2023, 14(12): 2245.
|
28. |
Teyfouri N, Rabbani H, Jabbari I. Low-dose cone-beam computed tomography reconstruction through a fast three-dimensional compressed sensing method based on the three-dimensional Pseudo-polar Fourier transform. J Med Signals Sens, 2022, 12(1): 8-24.
|
29. |
Jiang Z, Chen Y, Zhang Y, et al. Augmentation of CBCT reconstructed from under-sampled projections using deep learning. IEEE Trans Med Imaging, 2019, 38(11): 2705-2715.
|
30. |
Hyun C M, Bayaraa T, Yun H S, et al. Deep learning method for reducing metal artifacts in dental cone-beam CT using supplementary information from intra-oral scan. Phys Med Biol, 2022, 67(17): 175007.
|
31. |
Gao L, Xie K, Wu X, et al. Generating synthetic CT from low-dose cone-beam CT by using generative adversarial networks for adaptive radiotherapy. Radiat Oncol, 2021, 16(1): 202.
|
32. |
Chan Y, Li M, Parodi K, et al. Feasibility of CycleGAN enhanced low dose CBCT imaging for prostate radiotherapy dose calculation. Phys Med Biol, 2023, 68(10): 105014.
|
33. |
Wang Y, Chao L, Shan W, et al. Improving the quality of sparse-view cone-beam computed tomography via reconstruction-friendly interpolation network// Sato I, Gall J, Wang L, et al. Computer Vision – ACCV 2022. Switzerland: Springer, 2023: 86-100.
|
34. |
Choi K, Kim S H, Kim S. Self-supervised denoising of projection data for low-dose cone-beam CT. Med Phys, 2023, 50(10): 6319-6333.
|
35. |
Choi K. A comparative study between image- and projection-domain self-supervised learning for ultra low-dose CBCT. Annu Int Conf IEEE Eng Med Biol Soc, 2022, 2022: 2076-2079.
|
36. |
Zhao X, Du Y, Yue H, et al. Deep learning-based projection synthesis for low-dose cone-beam computed tomography imaging in image-guided radiotherapy. Quant Imaging Med Surg, 2024, 14(1): 231-250.
|
37. |
Hansen D C, Landry G, Kamp F, et al. ScatterNet: A convolutional neural network for cone-beam CT intensity correction. Med Phys, 2018, 45(11): 4916-4926.
|
38. |
Wu W, Hu D, Niu C, et al. DRONE: Dual-domain residual-based optimization network for sparse-view CT reconstruction. IEEE T Med Imaging, 2021, 40(11): 3002-3014.
|
39. |
Hu D, Liu J, Lv T, et al. Hybrid-domain neural network processing for sparse-view CT reconstruction. IEEE T Radiat Plasma, 2021, 5(1): 88-98.
|
40. |
Chao L, Wang Z, Zhang H, et al. Sparse-view cone beam CT reconstruction using dual CNNs in projection domain and image domain. Neurocomputing (Amsterdam), 2022, 493: 536-547.
|
41. |
Chao L, Zhang P, Wang Y, et al. Dual-domain attention-guided convolutional neural network for low-dose cone-beam computed tomography reconstruction. Knowledge-based systems, 2022, 251: 109295.
|
42. |
Ketcha M D, Marrama M, Souza A, et al. Sinogram + image domain neural network approach for metal artifact reduction in low-dose cone-beam computed tomography. J Med Imaging (Bellingham), 2021, 8(5): 52103.
|
43. |
Chao L, Wang Y, Zhang T, et al. Joint denoising and interpolating network for low-dose cone-beam CT reconstruction under hybrid dose-reduction strategy. Comput Biol Med, 2024, 168: 107830.
|
44. |
Lu K, Ren L, Yin F F. A geometry-guided deep learning technique for CBCT reconstruction. Phys Med Biol, 2021, 66(15): 15LT01.
|
45. |
Liao S, Mo Z, Zeng M, et al. Fast and low-dose medical imaging generation empowered by hybrid deep-learning and iterative reconstruction. Cell Rep Med, 2023, 4(7): 101119.
|
46. |
Chen M S, Zhang Z, Lu K, et al. Improving liver SBRT target localization with hybrid MRI/CBCT technology. Int J Radiat Oncol, 2024, 120(2): e109.
|
47. |
Lei Y, Wang T, Tian S, et al. Male pelvic multi-organ segmentation aided by CBCT-based synthetic MRI. Phys Med Biol, 2020, 65(3): 35013.
|
48. |
Huang S, Pareek A, Jensen M, et al. Self-supervised learning for medical image classification: a systematic review and implementation guidelines. NPJ Digit Med, 2023, 6(1): 74.
|
49. |
Lazaros K, Koumadorakis D E, Vrahatis A G, et al. Federated Learning: Navigating the landscape of collaborative intelligence. Electronics (Basel), 2024, 13(23): 4744.
|