1. |
Gao X, Wang Y, Chen X, et al. Interface, interaction, and intelligence in generalized brain-computer interfaces. Trends Cogn Sci, 2021, 25(8): 671-684.
|
2. |
迟新一. 结合高频稳态视觉诱发电位的混合脑-机接口关键技术研究. 北京: 北京协和医学院, 2022.
|
3. |
Pfurtscheller G, Allison B Z, Brunner C, et al. The hybrid BCI. Front Neurosci, 2010, 4: 30.
|
4. |
陈小刚, 王毅军. 基于脑电的无创脑机接口研究进展. 科技导报, 2018, 36(12): 22-30.
|
5. |
Zhang H, Xie J, Zhao C, et al. A novel spatial auditory brain-computer interface based on low-frequency periodic auditory motion stimulation paradigm. IEEE Trans Biomed Eng, 2025: 1-12.
|
6. |
Zhang L, Liu S, Liu X, et al. Emotional arousal and valence jointly modulate the auditory response: A 40-Hz ASSR study. IEEE Trans Neural Syst Rehabil Eng, 2021, 29: 1150-1157.
|
7. |
Zhang S, Chen Y, Zhang L, et al. Study on robot grasping system of SSVEP-BCI based on augmented reality stimulus. Tsinghua Sci Technol, 2023, 28(2): 322-329.
|
8. |
Gao S, Wang Y, Gao X, et al. Visual and auditory brain-computer interfaces. IEEE Trans Biomed Eng, 2014, 61(5): 1436-1447.
|
9. |
Barbosa S, Pires G, Nunes U. Toward a reliable gaze-independent hybrid BCI combining visual and natural auditory stimuli. J Neurosci Methods, 2016, 261: 47-61.
|
10. |
郭柳君, 张雪英, 陈桂军. 基于空-频域特征的视听混合脑机接口. 计算机工程与设计, 2020, 41(6): 1755-1761.
|
11. |
Wang F, He Y, Pan J, et al. A novel audiovisual brain-computer interface and its application in awareness detection. Sci Rep, 2015, 5: 9962.
|
12. |
Brainard D H. The psychophysics toolbox. Spat Vis, 1997, 10(4): 433-436.
|
13. |
Manyakov N V, Chumerin N, Robben A, et al. Sampled sinusoidal stimulation profile and multichannel fuzzy logic classification for monitor-based phase-coded SSVEP brain-computer interfacing. J Neural Eng, 2013, 10(3): 747-754.
|
14. |
Shamsi E, Shirzhiyan Z, Keihani A, et al. Classification of the EEG evoked by auditory stimuli with a periodic carrier frequency coding in order to be used in BCI systems. Front Biomed Technol, 2016, 3(3-4): 41-48.
|
15. |
Spüler M, Kurek S. Alpha-band lateralization during auditory selective attention for brain–computer interface control. Brain-Comput Interfa, 2018, 5(1): 23-29.
|
16. |
Kaongoen N, Jo S. A novel hybrid auditory BCI paradigm combining ASSR and P300. J Neurosci Methods, 2017, 279: 44-51.
|
17. |
Wang L, Noordanus E, Opstal A J V. Towards real-time detection of auditory steady-state responses: a comparative study. IEEE Access, 2021, 9: 108975-108991.
|
18. |
Wang Y, Liu X, Cui H, et al. An auditory selective attention brain-computer interface system based on auditory steady-state response. Appl Acoust, 2025, 228: 110291.
|
19. |
Kachenoura A, Albera L, Senhadji L, et al. ICA: A potential tool for BCI systems. IEEE Signal Process Mag, 2008, 25(1): 57-68.
|
20. |
Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods, 2004, 134(1): 9-21.
|
21. |
Chen X, Wang Y, Gao S, et al. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface. J Neural Eng, 2015, 12(4): 046008.
|
22. |
陈小刚. 高速率稳态视觉诱发电位脑-机接口的关键技术研究. 北京: 清华大学, 2015.
|
23. |
Mariko T, Kenji K, Yohei I, et al. Global and parallel cortical processing based on auditory gamma oscillatory responses in humans. Cereb Cortex, 2021, 31(10): 4518-4532.
|
24. |
肖晓琳. 基于微弱事件相关脑电特征的脑—机编解码关键技术及应用研究. 天津: 天津大学, 2020.
|
25. |
Zhao X, Wang Z, Zhang M, et al. A comfortable steady state visual evoked potential stimulation paradigm using peripheral vision. J Neural Eng, 2021, 18: 056021.
|
26. |
Ming G, Pei W, Gao X, et al. A high-performance SSVEP-based BCI using imperceptible flickers. J Neural Eng, 2023, 20: 016042.
|
27. |
Nakanishi M, Wang Y, Chen X, et al. Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis. IEEE Trans Biomed Eng, 2017, 65(1): 104-112.
|
28. |
Liu B, Chen X, Shi N, et al. Improving the performance of individually calibrated SSVEP-BCI by task- discriminant component analysis. IEEE Trans Neural Syst Rehabil Eng, 2021, 29: 1998-2007.
|
29. |
Xu G, Wu Y, Li M. The study of influence of sound on visual ERP-based brain computer interface. Sensors, 2020, 20(4): 1203.
|
30. |
Syrov N, Yakovlev L, Nikolaeva V, et al. Mental strategies in a P300-BCI: visuomotor transformation is an option. Diagnostics (Basel), 2022, 12(11): 2607.
|
31. |
Treder M S, Purwins H, Miklody D, et al. Decoding auditory attention to instruments in polyphonic music using single-trial EEG classification. J Neural Eng, 2014, 11(2): 026009.
|
32. |
Zhou S, Allison B Z, Kübler A, et al. Effects of background music on objective and subjective performance measures in an auditory BCI. Front Comput Neurosci, 2016, 10: 105.
|
33. |
Zhang H, Xie J, Xiao Y, et al. Steady-state auditory motion based potentials evoked by intermittent periodic virtual sound source and the effect of auditory noise on EEG enhancement. Hear Res, 2023, 428: 108670.
|
34. |
Robinson A K, Venkatesh P, Boring M J, et al. Very high density EEG elucidates spatiotemporal aspects of early visual processing. Sci Rep, 2017, 7(1): 16248.
|