1. |
World Health Organization. WHO TB knowledge sharing platform. Geneva: World Health Organization, 2023.
|
2. |
Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol, 2021, 22(4): 266-282.
|
3. |
Chen X, Li J, Kang R, et al. Ferroptosis: machinery and regulation. Autophagy, 2021, 17(9): 2054-2081.
|
4. |
Amaral EP, Costa DL, Namasivayam S, et al. A major role for ferroptosis in Mycobacterium tuberculosis-induced cell death and tissue necrosis. J Exp Med, 2019, 216(3): 556-570.
|
5. |
Yan R, Xie E, Li Y, et al. The structure of erastin-bound xCT-4F2hc complex reveals molecular mechanisms underlying erastin-induced ferroptosis. Cell Res, 2022, 32(7): 687-690.
|
6. |
Chen H, Qi Q, Wu N, et al. Aspirin promotes RSL3-induced ferroptosis by suppressing mTOR/SREBP-1/SCD1-mediated lipogenesis in PIK3CA-mutant colorectal cancer. Redox Biol, 2022, 55: 102426.
|
7. |
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5): 1060-1072.
|
8. |
Lin Z, Liu J, Long F, et al. The lipid flippase SLC47A1 blocks metabolic vulnerability to ferroptosis. Nat Commun, 2022, 13(1): 7965.
|
9. |
Li C, Zhang Y, Liu J, et al. Mitochondrial DNA stress triggers autophagy-dependent ferroptotic death. Autophagy, 2021, 17(4): 948-960.
|
10. |
Lee H, Zandkarimi F, Zhang Y, et al. Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat Cell Biol, 2020, 22(2): 225-234.
|
11. |
Sang M, Luo R, Bai Y, et al. Mitochondrial membrane anchored photosensitive nano-device for lipid hydroperoxides burst and inducing ferroptosis to surmount therapy-resistant cancer. Theranostics, 2019, 9(21): 6209-6223.
|
12. |
Dorman SE, Schumacher SG, Alland D, et al. Xpert MTB/RIF ultra for detection of Mycobacterium tuberculosis and rifampicin resistance: a prospective multicentre diagnostic accuracy study. Lancet Infect Dis, 2018, 18(1): 76-84.
|
13. |
Trébucq A, Enarson DA, Chiang CY, et al. Xpert® MTB/RIF for national tuberculosis programmes in low-income countries: when, where and how?. Int J Tuberc Lung Dis, 2011, 15(12): 1567-1572.
|
14. |
Amaral EP, Foreman TW, Namasivayam S, et al. GPX4 regulates cellular necrosis and host resistance in Mycobacterium tuberculosis infection. J Exp Med, 2022, 219(11): e20220504.
|
15. |
Qiang L, Zhang Y, Lei Z, et al. A mycobacterial effector promotes ferroptosis-dependent pathogenicity and dissemination. Nat Commun, 2023, 14(1): 1430.
|
16. |
Kassovska-Bratinova S, Yang G, Igarashi K, et al. Bach1 modulates heme oxygenase-1 expression in the neonatal mouse lung. Pediatr Res, 2009, 65(2): 145-149.
|
17. |
Yamada N, Yamaya M, Okinaga S, et al. Microsatellite polymorphism in the heme oxygenase-1 gene promoter is associated with susceptibility to emphysema. Am J Hum Genet, 2000, 66(1): 187-195.
|
18. |
Abdalla MY, Ahmad IM, Switzer B, et al. Induction of heme oxygenase-1 contributes to survival of Mycobacterium abscessus in human macrophages-like THP-1 cells. Redox Biol, 2015, 4: 328-339.
|
19. |
Costa DL, Namasivayam S, Amaral EP, et al. Pharmacological inhibition of host heme oxygenase-1 suppresses Mycobacterium tuberculosis infection in vivo by a mechanism dependent on tlymphocytes. mBio, 2016, 7(5): e01675-16.
|
20. |
Scharn CR, Collins AC, Nair VR, et al. Heme oxygenase-1 regulates inflammation and mycobacterial survival in human macrophages during Mycobacterium tuberculosis infection. J Immunol, 2016, 196(11): 4641-4649.
|
21. |
Andrade BB, Pavan Kumar N, Mayer-Barber KD, et al. Plasma heme oxygenase-1 levels distinguish latent or successfully treated human tuberculosis from active disease. PLoS One, 2013, 8(5): e62618.
|
22. |
Andrade BB, Pavan Kumar N, Amaral EP, et al. Heme oxygenase-1 regulation of matrix metalloproteinase-1 expression underlies distinct disease profiles in Tuberculosis. J Immunol, 2015, 195(6): 2763-2773.
|
23. |
Reddy VP, Chinta KC, Saini V, et al. Ferritin H deficiency in myeloid compartments dysregulates host energy metabolism and increases susceptibility to Mycobacterium tuberculosis infection. Front Immunol, 2018, 9: 860.
|
24. |
Yang S, Ouyang J, Lu Y, et al. A dual role of heme oxygenase-1 in tuberculosis. Front Immunol, 2022, 13: 842858.
|
25. |
Xiao L, Huang H, Fan S, et al. Ferroptosis: a mixed blessing for infectious diseases. Front Pharmacol, 2022, 13: 992734.
|
26. |
Amaral EP, Namasivayam S, Costa DL, et al. The transcription factor BACH1 promotes tissue damage and host susceptibility in Mycobacterium tuberculosis infection by reducing expression of Gpx4, a major negative regulator of ferroptosis. J Immunol, 2020, 204(Suppl 1): 227.16.
|
27. |
Amaral EP, Namasivayam S, Queiroz ATL, et al. BACH1 promotes tissue necrosis and Mycobacterium tuberculosis susceptibility. Nat Microbiol, 2024, 9(1): 120-135.
|
28. |
Aberman K, Fisher L, Oland S, et al. The transcription factor Bach1 plays an important role in regulating macrophage ferroptosis upon iron supplementation. J Immunol, 2021, 206(Suppl 1): 111.15.
|
29. |
Wufuer D, Li Y, Aierken H, et al. Bioinformatics-led discovery of ferroptosis-associated diagnostic biomarkers and molecule subtypes for tuberculosis patients. Eur J Med Res, 2023, 28(1): 445.
|
30. |
Chen L, Hua J, Dai X, et al. Assessment of ferroptosis-associated gene signatures as potential biomarkers for differentiating latent from active tuberculosis in children. Microb Genom, 2023, 9(5): mgen000997.
|
31. |
Liang T, Chen J, Xu G, et al. Ferroptosis-related gene SOCS1, a marker for tuberculosis diagnosis and treatment, involves in macrophage polarization and facilitates bone destruction in tuberculosis. Tuberculosis (Edinb), 2022, 132: 102140.
|
32. |
叶江娥, 方雪晖, 熊延军, 等. 基于转录组学和机器学习算法的肺结核铁死亡相关关键基因的研究. 中国防痨杂志, 2024, 46(1): 92-99.
|
33. |
Minchella PA, Donkor S, McDermid JM, et al. Iron homeostasis and progression to pulmonary tuberculosis disease among household contacts. Tuberculosis (Edinb), 2015, 95(3): 288-293.
|
34. |
McDermid JM, Hennig BJ, van der Sande M, et al. Host iron redistribution as a risk factor for incident tuberculosis in HIV infection: an 11-year retrospective cohort study. BMC Infect Dis, 2013, 13: 48.
|
35. |
Dai Y, Shan W, Yang Q, et al. Biomarkers of iron metabolism facilitate clinical diagnosis in Mycobacterium tuberculosis infection. Thorax, 2019, 74(12): 1161-1167.
|