1. |
Zhang Y, Roux C, Rouchaud A, et al. Recent advances in Fe-based bioresorbable stents: materials design and biosafety. Bioact Mater, 2023, 31: 333-354.
|
2. |
Ahadi F, Azadi M, Biglari M, et al. Evaluation of coronary stents: a review of types, materials, processing techniques, design, and problems. Heliyon, 2023, 9(2): e13575.
|
3. |
Koźlik M, Harpula J, Chuchra PJ, et al. Drug-eluting stents: technical and clinical progress. Biomimetics (Basel), 2023, 8(1): 72.
|
4. |
Tsai ML, Hsieh MJ, Chen CC, et al. Comparison of 9-month angiographic follow-up and long-term clinical outcomes of biodegradable polymer drug-eluting stents and second-generation durable polymer drug-eluting stents in patients undergoing single coronary artery stenting. Acta Cardiol Sin, 2020, 36(2): 97-104.
|
5. |
Torii S, Jinnouchi H, Sakamoto A, et al. Drug-eluting coronary stents: insights from preclinical and pathology studies. Nat Rev Cardiol, 2020, 17(1): 37-51.
|
6. |
Sambola A, Rello P, Soriano T, et al. Safety and efficacy of drug eluting stents vs bare metal stents in patients with atrial fibrillation: a systematic review and meta-analysis. Thromb Res, 2020, 195: 128-135.
|
7. |
Stone GW, Kereiakes DJ, Gori T, et al. 5-year outcomes after bioresorbable coronary scaffolds implanted with improved technique. J Am Coll Cardiol, 2023, 82(3): 183-195.
|
8. |
Song L, Guan C, Yu M, et al. Sirolimus-eluting iron bioresorbable scaffold versus cobalt-chromium everolimus-eluting stents in patients with coronary artery disease: rationale and design of the IRONMAN-II trial. Am Heart J, 2024, 275: 53-61.
|
9. |
Wang Z, Song J, Peng Y. New insights and perspectives into biodegradable metals in cardiovascular stents: a mini review. J Alloy Compd, 2024, 1002(8): 175313.
|
10. |
Seth A, Onuma Y, Chandra P, et al. Three-year clinical and two-year multimodality imaging outcomes of a thin-strut sirolimus-eluting bioresorbable vascular scaffold: MeRes-1 trial. EuroIntervention, 2019, 15(7): 607-614.
|
11. |
Lutz M, Abizaid A, Nielsen Holck E, et al. Long-term safety and effectiveness of the Fantom bioresorbable coronary artery scaffold: final results of the FANTOM II trial. EuroIntervention, 2024, 20(7): e453-e456.
|
12. |
Wang X, Li Y, Fu G, et al. Three-year clinical outcomes of the novel sirolimus-eluting bioresorbable scaffold for the treatment of de novo coronary artery disease: a prospective patient-level pooled analysis of NeoVas trials. Catheter Cardiovasc Interv, 2023, 101(6): 967-972.
|
13. |
Song L, Xu B, Chen Y, et al. Thinner strut sirolimus-eluting BRS versus EES in patients with coronary artery disease: FUTURE-II trial. JACC Cardiovasc Interv, 2021, 14(13): 1450-1462.
|
14. |
Ferdous MM, Jie Z, Gao L, et al. A first-in-human study of the bioheart sirolimus-eluting bioresorbable vascular scaffold in patients with coronary artery disease: two-year clinical and imaging outcomes. Adv Ther, 2022, 39(8): 3749-3765.
|
15. |
Oliver AA, Sikora-Jasinska M, Demir AG, et al. Recent advances and directions in the development of bioresorbable metallic cardiovascular stents: insights from recent human and in vivo studies. Acta Biomater, 2021, 127: 1-23.
|
16. |
Shen D, Qi H, Lin W, et al. PDLLA-Zn-nitrided Fe bioresorbable scaffold with 53-μm-thick metallic struts and tunable multistage biodegradation function. Sci Adv, 2021, 7(23): eabf0614.
|
17. |
Wlodarczak A, Montorsi P, Torzewski J, et al. One- and two-year clinical outcomes of treatment with resorbable magnesium scaffolds for coronary artery disease: the prospective, international, multicentre BIOSOLVE-IV registry. EuroIntervention, 2023, 19(3): 232-239.
|
18. |
Fu J, Su Y, Qin YX, et al. Evolution of metallic cardiovascular stent materials: a comparative study among stainless steel, magnesium and zinc. Biomaterials, 2020, 230: 119641.
|
19. |
Zhang ZQ, Yang YX, Li JA, et al. Advances in coatings on magnesium alloys for cardiovascular stents - a review. Bioact Mater, 2021, 6(12): 4729-4757.
|
20. |
Seetharaman S, Sankaranarayanan D, Gupta M. Magnesium-based temporary implants: potential, current status, applications, and challenges. J Funct Biomater, 2023, 14(6): 324.
|
21. |
Harawaza K, Cousins B, Roach P, et al. Modification of the surface nanotopography of implant devices: a translational perspective. Mater Today Bio, 2021, 12: 100152.
|
22. |
Zhu J, Zhang X, Niu J, et al. Biosafety and efficacy evaluation of a biodegradable magnesium-based drug-eluting stent in porcine coronary artery. Sci Rep, 2021, 11(1): 7330.
|
23. |
Haude M, Wlodarczak A, van der Schaaf RJ, et al. A new resorbable magnesium scaffold for de novo coronary lesions (DREAMS 3): one-year results of the BIOMAG-I first-in-human study. EuroIntervention, 2023, 19(5): e414-e422.
|
24. |
Deng Y, Huang J, Chen C, et al. Fe3O4 coated stent prevent artery neointimal hyperplasia by inhibiting vascular smooth muscle cell proliferation. Mater Today Bio, 2024, 27: 101133.
|
25. |
Zheng JF, Xi ZW, Li Y, et al. Long-term safety and absorption assessment of a novel bioresorbable nitrided iron scaffold in porcine coronary artery. Bioact Mater, 2022, 17: 496-505.
|
26. |
Gao RL, Xu B, Sun Z, et al. First-in-human evaluation of a novel ultrathin sirolimus-eluting iron bioresorbable scaffold: 3-year outcomes of the IBS-FIM trial. EuroIntervention, 2023, 19(3): 222-231.
|
27. |
Roman AM, Cimpoeșu R, Pricop B, et al. Investigations on the degradation behavior of processed FeMnSi-xCu shape memory alloys. Nanomaterials (Basel), 2024, 14(4): 330.
|
28. |
Chen L, Guo Y, Chen L, et al. Injectable Zn2+ and paeoniflorin release hydrogel for promoting wound healing. ACS Appl Bio Mater, 2023, 6(6): 2184-2195.
|
29. |
Mostaed E, Sikora-Jasinska M, Ardakani MS, et al. Towards revealing key factors in mechanical instability of bioabsorbable Zn-based alloys for intended vascular stenting. Acta Biomater, 2020, 105: 319-335.
|
30. |
钱漪, 袁广银. 可降解锌合金血管支架的研究现状、面临的挑战与对策思考. 金属学报, 2021, 57(3): 272-282.
|
31. |
袁广银. 新型全降解锌合金血管支架研发及其临床应用基础研究. 科技成果管理与研究, 2022, 17(12): 63-66.
|
32. |
Lin S, Ran X, Yan X, et al. Corrosion behavior and biocompatibility evaluation of a novel zinc-based alloy stent in rabbit carotid artery model. J Biomed Mater Res B Appl Biomater, 2019, 107(6): 1814-1823.
|
33. |
Jiang J, Qian Y, Huang H, et al. Biodegradable Zn-Cu-Mn alloy with suitable mechanical performance and in vitro degradation behavior as a promising candidate for vascular stents. Biomater Adv, 2022, 133: 112652.
|
34. |
Zhang X, Niu J, Yeung KW, et al. Developing Zn-2Cu-xLi (x<0.1wt%) alloys with suitable mechanical properties, degradation behaviors and cytocompatibility for vascular stents. Acta Biomater, 2024, 12: S1742-7061(24)00313-1.
|
35. |
Zeng Y, Guan Z, Linsley CS, et al. Experimental study on novel biodegradable Zn-Fe-Si alloys. J Biomed Mater Res B Appl Biomater, 2022, 110(10): 2266-2275.
|
36. |
Guan Z, Linsley CS, Pan S, et al. Zn-Mg-WC nanocomposites for bioresorbable cardiovascular stents: microstructure, mechanical properties, fatigue, shelf life, and corrosion. ACS Biomater Sci Eng, 2022, 8(1): 328-339.
|
37. |
Yang H, Jin D, Rao J, et al. Lithium-induced optimization mechanism for an ultrathin-strut biodegradable Zn-based vascular scaffold. Adv Mater, 2023, 35(19): e2301074.
|
38. |
Guillory RJ 2nd, Mostaed E, Oliver AA, et al. Improved biocompatibility of Zn-Ag-based stent materials by microstructure refinement. Acta Biomater, 2022, 145: 416-426.
|
39. |
Dou Z, Chen S, Wang J, et al. A “built-up” composite film with synergistic functionalities on Mg-2Zn-1Mn bioresorbable stents improves corrosion control effects and biocompatibility. Bioact Mater, 2023, 25: 223-238.
|
40. |
Pan K, Zhang W, Shi H, et al. Zinc Ion-crosslinked polycarbonate/heparin composite coatings for biodegradable Zn-alloy stent applications. Colloids Surf B Biointerfaces, 2022, 218: 112725.
|
41. |
Toong DWY, Toh HW, Ng JCK, et al. Bioresorbable polymeric scaffold in cardiovascular applications. Int J Mol Sci, 2020, 21(10): 3444.
|
42. |
Li L, Soyhan I, Warszawik E, et al. Layered double hydroxides: recent progress and promising perspectives toward biomedical applications. Adv Sci (Weinh), 2024, 11(20): e2306035.
|
43. |
Zong J, He Q, Liu Y, et al. Advances in the development of biodegradable coronary stents: a translational perspective. Mater Today Bio, 2022, 16: 100368.
|
44. |
Li D, Dai D, Xiong G, et al. Composite nanocoatings of biomedical magnesium alloy implants: advantages, mechanisms, and design strategies. Adv Sci (Weinh), 2023, 10(18): e2300658.
|
45. |
Bian J, Yang R, Wang D, et al. Evaluation of the safety and efficacy of a polyzene-F nanocoated coronary stent system: a systematic review and single-arm meta-analysis. Front Cardiovasc Med, 2023, 10: 1095794.
|
46. |
Singh N, Kulkarni PP, Tripathi P, et al. Nanogold-coated stent facilitated non-invasive photothermal ablation of stent thrombosis and restoration of blood flow. Nanoscale Adv, 2024, 6(5): 1497-1506.
|
47. |
Jiang W, Zhao W, Zhou T, et al. A review on manufacturing and post-processing technology of vascular stents. Micromachines (Basel), 2022, 13(1): 140.
|
48. |
Kianifar M, Azadi M, Heidari F. Evaluation of stress-controlled high-cycle fatigue characteristics in PLA-wood fused deposition modeling 3D-printed parts under bending loads. PLoS One, 2024, 19(4): e0300569.
|
49. |
Wang Y, Venezuela J, Dargusch M. Biodegradable shape memory alloys: progress and prospects. Biomaterials, 2021, 279: 121215.
|
50. |
Ryu H, Seo MH, Rogers JA. Bioresorbable metals for biomedical applications: from mechanical components to electronic devices. Adv Healthc Mater, 2021, 10(17): e2002236.
|
51. |
Son D, Lee J, Lee DJ, et al. Bioresorbable electronic stent integrated with therapeutic nanoparticles for endovascular diseases. ACS Nano, 2015, 9(6): 5937-5946.
|