- Department of Laboratory Medicine, the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan 610500, P. R. China;
Protein post-translational modifications (PTMs) are critical for modulating protein structure and function. Among these, lysine lactylation (Kla) has garnered significant attention in recent years as a newly discovered PTM. Although Kla has been thoroughly investigated in eukaryotic systems, its study in prokaryotes, especially bacteria, remains comparatively limited. Emerging research highlights that bacterial Kla, operating through dynamic modification mechanisms, is pivotal in processes such as growth and metabolism, virulence control, pathogenicity, and host-pathogen interactions. This article provides a comprehensive overview of the latest progress in bacterial Kla research, emphasizing its historical discovery, distinct modification features, and underlying molecular regulatory mechanisms. We further explore the regulatory roles of this modification in bacterial physiological processes and pathogenesis, concluding with a discussion of current research challenges and prospective future developments.
Copyright © the editorial department of West China Medical Journal of West China Medical Publisher. All rights reserved
1. | Conibear AC. Deciphering protein post-translational modifications using chemical biology tools. Nat Rev Chem, 2020, 4(12): 674-695. |
2. | Lee JM, Hammarén HM, Savitski MM, et al. Control of protein stability by post-translational modifications. Nat Commun, 2023, 14(1): 201. |
3. | Yang YH, Wen R, Yang N, et al. Roles of protein post-translational modifications in glucose and lipid metabolism: mechanisms and perspectives. Mol Med, 2023, 29(1): 93. |
4. | Narita T, Weinert BT, Choudhary C. Functions and mechanisms of non-histone protein acetylation. Nat Rev Mol Cell Biol, 2019, 20(3): 156-174. |
5. | Schwarzer E, Skorokhod O. Post-translational modifications of proteins of Malaria parasites during the life cycle. Int J Mol Sci, 2024, 25(11): 6145. |
6. | Shvedunova M, Akhtar A. Modulation of cellular processes by histone and non-histone protein acetylation. Nat Rev Mol Cell Biol, 2022, 23(5): 329-349. |
7. | Zhao P, Malik S. The phosphorylation to acetylation/methylation cascade in transcriptional regulation: how kinases regulate transcriptional activities of DNA/histone-modifying enzymes. Cell Biosci, 2022, 12(1): 83. |
8. | Xia J, Liu J, Xu F, et al. Proteomic profiling of lysine acetylation and succinylation in Staphylococcus aureus. Clin Transl Med, 2022, 12(10): e1058. |
9. | Macek B, Forchhammer K, Hardouin J, et al. Protein post-translational modifications in bacteria. Nat Rev Microbiol, 2019, 17(11): 651-664. |
10. | Yakubu RR, Nieves E, Weiss LM. The methods employed in mass spectrometric analysis of posttranslational modifications (PTMs) and protein-protein interactions (PPIs). Adv Exp Med Biol, 2019, 1140: 169-198. |
11. | Huang Y, Zhu C, Pan L, et al. The role of Mycobacterium tuberculosis acetyltransferase and protein acetylation modifications in tuberculosis. Front Cell Infect Microbiol, 2023, 13: 1218583. |
12. | Perry F, Johnson C, Aylward B, et al. The differential phosphorylation-dependent signaling and glucose immunometabolic responses induced during infection by Salmonella enteritidis and Salmonella heidelberg in chicken macrophage-like cells. Microorganisms, 2020, 8(7): 1041. |
13. | Yang H, Sha W, Liu Z, et al. Lysine acetylation of DosR regulates the hypoxia response of Mycobacterium tuberculosis. Emerg Microbes Infect, 2018, 7(1): 34. |
14. | Zhang D, Tang Z, Huang H, et al. Metabolic regulation of gene expression by histone lactylation. Nature, 2019, 574(7779): 575-580. |
15. | Ren H, Tang Y, Zhang D. The emerging role of protein L-lactylation in metabolic regulation and cell signalling. Nat Metab, 2025, 7(4): 647-664. |
16. | Li Z, Gong T, Wu Q, et al. Lysine lactylation regulates metabolic pathways and biofilm formation in Streptococcus mutans. Sci Signal, 2023, 16(801): eadg1849. |
17. | Wang Y, Liu Y, Xiang G, et al. Post-translational toxin modification by lactate controls Staphylococcus aureus virulence. Nat Commun, 2024, 15(1): 9835. |
18. | Zhang C, Zhou T, Li C, et al. Deciphering novel enzymatic and non-enzymatic lysine lactylation in Salmonella. Emerg Microbes Infect, 2025, 14(1): 2475838. |
19. | Dong H, Zhang J, Zhang H, et al. YiaC and CobB regulate lysine lactylation in Escherichia coli. Nat Commun, 2022, 13(1): 6628. |
20. | Wang J, Wang Z, Wang Q, et al. Ubiquitous protein lactylation in health and diseases. Cell Mol Biol Lett, 2024, 29(1): 23. |
21. | Zhao L, Qi H, Lv H, et al. Lactylation in health and disease: physiological or pathological?. Theranostics, 2025, 15(5): 1787-1821. |
22. | Gaffney DO, Jennings EQ, Anderson CC, et al. Non-enzymatic lysine lactoylation of glycolytic enzymes. Cell Chem Biol, 2020, 27(2): 206-213. |
23. | Li Q, Zhao R, Shen Y, et al. Lactylation in tumor immune escape and immunotherapy: multifaceted functions and therapeutic strategies. Research, 2025. |
24. | de Bari L, Scirè A, Minnelli C, et al. Interplay among oxidative stress, methylglyoxal pathway and S-glutathionylation. Antioxidants (Basel), 2020, 10(1): 19. |
25. | Anaya-Sanchez A, Feng Y, Berude JC, et al. Detoxification of methylglyoxal by the glyoxalase system is required for glutathione availability and virulence activation in Listeria monocytogenes. PLoS Pathog, 2021, 17(8): e1009819. |
26. | Galligan JJ, Wepy JA, Streeter MD, et al. Methylglyoxal-derived posttranslational arginine modifications are abundant histone marks. Proc Natl Acad Sci U S A, 2018, 115(37): 9228-9233. |
27. | Zhao W, Xin J, Yu X, et al. Recent advances of lysine lactylation in prokaryotes and eukaryotes. Front Mol Biosci, 2025, 11: 1510975. |
28. | Zong Z, Ren J, Yang B, et al. Emerging roles of lysine lactyltransferases and lactylation. Nat Cell Biol, 2025, 27(4): 563-574. |
29. | Li J, Ma P, Liu Z, et al. L-and D-lactate: unveiling their hidden functions in disease and health. Cell Commun Signal, 2025, 23(1): 134. |
30. | Iozzo M, Pardella E, Giannoni E, et al. The role of protein lactylation: a kaleidoscopic post-translational modification in cancer. Mol Cell, 2025, 85(7): 1263-1279. |
31. | Shi P, Ma Y, Zhang S. Non-histone lactylation: unveiling its functional significance. Front Cell Dev Biol, 2025, 13: 1535611. |
32. | Yang Y, He H, Liu B, et al. Protein lysine acetylation regulates oral microorganisms. Front Cell Infect Microbiol, 2025, 15: 1594947. |
33. | Christensen DG, Meyer JG, Baumgartner JT, et al. Identification of novel protein lysine acetyltransferases in Escherichia coli. mBio, 2018, 9(5): e01905-18. |
34. | Liu W, Tan Y, Cao S, et al. Protein acetylation mediated by YfiQ and CobB is involved in the virulence and stress response of Yersinia pestis. Infect Immun, 2018, 86(6): e00224-18. |
35. | Du R, Gao Y, Yan C, et al. Sirtuin 1/sirtuin 3 are robust lysine delactylases and sirtuin 1-mediated delactylation regulates glycolysis. iScience, 2024, 27(10): 110911. |
36. | Liu W, Yang R, Zhan Y, et al. Lactate and lactylation: emerging roles in autoimmune diseases and metabolic reprogramming. Front Immunol, 2025, 16: 1589853. |
37. | Curry AM, Rymarchyk S, Herrington NB, et al. Nicotinamide riboside activates SIRT5 deacetylation. FEBS J, 2023, 290(19): 4762-4776. |
38. | Rardin MJ, He W, Nishida Y, et al. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab, 2013, 18(6): 920-933. |
39. | Varner EL, Trefely S, Bartee D, et al. Quantification of lactoyl-CoA (lactyl-CoA) by liquid chromatography mass spectrometry in mammalian cells and tissues. Open Biol, 2020, 10(9): 200187. |
40. | Sgarra R, Battista S, Cerchia L, et al. Mechanism of action of lactic acid on histones in cancer. Antioxid Redox Signal, 2024, 40(4/5/6): 236-249. |
41. | Trujillo MN, Jennings EQ, Hoffman EA, et al. Lactoylglutathione promotes inflammatory signaling in macrophages through histone lactoylation. Mol Metab, 2024, 81: 101888. |
42. | Pan T, Pei Z, Fang Z, et al. Uncovering the specificity and predictability of tryptophan metabolism in lactic acid bacteria with genomics and metabolomics. Front Cell Infect Mic, 2023, 13: 1154346. |
43. | Gänzle MG. Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr Opin Food Sci, 2015, 2: 106-117. |
44. | Wilson WR, Gewitz M, Lockhart PB, et al. Prevention of viridans group streptococcal infective endocarditis: a scientific statement from the American Heart Association. Circulation, 2021, 143(20): e963-e978. |
45. | Lemos JA, Palmer SR, Zeng L, et al. The biology of Streptococcus mutans. Microbiol Spectr, 2019, 7(1): GPP3-0051-2018. |
46. | Zhang Q, Ma Q, Wang Y, et al. Molecular mechanisms of inhibiting glucosyltransferases for biofilm formation in Streptococcus mutans. Int J Oral Sci, 2021, 13(1): 30. |
47. | Soumya MP, Parameswaran R, Madhavan Nampoothiri K. Nisin controlled homologous over-expression of an exopolysaccharide biosynthetic glycosyltransferase gene for enhanced EPS production in Lactobacillus plantarum BR2. Bioresour Technol, 2023, 385: 129387. |
48. | Costa Oliveira BE, Cury JA, Ricomini Filho AP. Biofilm extracellular polysaccharides degradation during starvation and enamel demineralization. PLoS One, 2017, 12(7): e0181168. |
49. | Liu Y, Ren Z, Hwang G, et al. Therapeutic strategies targeting cariogenic biofilm microenvironment. Adv Dent Res, 2018, 29(1): 86-92. |
50. | Lin Y, Chen J, Zhou X, et al. Inhibition of Streptococcus mutans biofilm formation by strategies targeting the metabolism of exopolysaccharides. Crit Rev Microbiol, 2021, 47(5): 667-677. |
51. | Sonveaux P, Végran F, Schroeder T, et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest, 2008, 118(12): 3930-3942. |
52. | Pisarsky L, Bill R, Fagiani E, et al. Targeting metabolic symbiosis to overcome resistance to anti-angiogenic therapy. Cell Rep, 2016, 15(6): 1161-1174. |
53. | Cheung GYC, Bae JS, Otto M. Pathogenicity and virulence of Staphylococcus aureus. Virulence, 2021, 12(1): 547-569. |
54. | GBD 2019 Antimicrobial Resistance Collaborators. Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet, 2022, 400(10369): 2221-2248. |
55. | Berube BJ, Bubeck Wardenburg J. Staphylococcus aureus α-toxin: nearly a century of intrigue. Toxins (Basel), 2013, 5(6): 1140-1166. |
56. | Otto M. Staphylococcus aureus toxins. Curr Opin Microbiol, 2014, 17: 32-37. |
57. | Aires CP, Del Bel Cury AA, Tenuta LM, et al. Effect of starch and sucrose on dental biofilm formation and on root dentine demineralization. Caries Res, 2008, 42(5): 380-386. |
58. | Zeng L, Burne RA. Comprehensive mutational analysis of sucrose-metabolizing pathways in Streptococcus mutans reveals novel roles for the sucrose phosphotransferase system permease. J Bacteriol, 2013, 195(4): 833-843. |
59. | Bowen WH, Koo H. Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res, 2011, 45(1): 69-86. |
60. | Klahan P, Okuyama M, Jinnai K, et al. Engineered dextranase from Streptococcus mutans enhances the production of longer isomaltooligosaccharides. Biosci Biotechnol Biochem, 2018, 82(9): 1480-1487. |
61. | Kesavalu L, Lucas AR, Verma RK, et al. Increased atherogenesis during Streptococcus mutans infection in ApoE-null mice. J Dent Res, 2012, 91(3): 255-260. |
62. | Miyatani F, Kuriyama N, Watanabe I, et al. Relationship between Cnm-positive Streptococcus mutans and cerebral microbleeds in humans. Oral Dis, 2015, 21(7): 886-893. |
63. | Naka S, Wato K, Misaki T, et al. Streptococcus mutans induces IgA nephropathy-like glomerulonephritis in rats with severe dental caries. Sci Rep, 2021, 11(1): 5784. |
64. | Simic Z, Weiwad M, Schierhorn A, et al. The ε-amino group of protein lysine residues is highly susceptible to nonenzymatic acylation by several physiological acyl-coa thioesters. Chembiochem, 2015, 16(16): 2337-2347. |
65. | Wang ZA, Cole PA. The chemical biology of reversible lysine post-translational modifications. Cell Chem Biol, 2020, 27(8): 953-969. |
66. | Wang JX, Choi SYC, Niu X, et al. Lactic acid and an acidic tumor microenvironment suppress anticancer immunity. Int J Mol Sci, 2020, 21(21): 8363. |
67. | Aganja RP, Sivasankar C, Senevirathne A, et al. Salmonella as a promising curative tool against cancer. Pharmaceutics, 2022, 14(10): 2100. |
68. | Dai SK, Liu PP, Li X, et al. Dynamic profiling and functional interpretation of histone lysine crotonylation and lactylation during neural development. Development, 2022, 149(14): dev200049. |
- 1. Conibear AC. Deciphering protein post-translational modifications using chemical biology tools. Nat Rev Chem, 2020, 4(12): 674-695.
- 2. Lee JM, Hammarén HM, Savitski MM, et al. Control of protein stability by post-translational modifications. Nat Commun, 2023, 14(1): 201.
- 3. Yang YH, Wen R, Yang N, et al. Roles of protein post-translational modifications in glucose and lipid metabolism: mechanisms and perspectives. Mol Med, 2023, 29(1): 93.
- 4. Narita T, Weinert BT, Choudhary C. Functions and mechanisms of non-histone protein acetylation. Nat Rev Mol Cell Biol, 2019, 20(3): 156-174.
- 5. Schwarzer E, Skorokhod O. Post-translational modifications of proteins of Malaria parasites during the life cycle. Int J Mol Sci, 2024, 25(11): 6145.
- 6. Shvedunova M, Akhtar A. Modulation of cellular processes by histone and non-histone protein acetylation. Nat Rev Mol Cell Biol, 2022, 23(5): 329-349.
- 7. Zhao P, Malik S. The phosphorylation to acetylation/methylation cascade in transcriptional regulation: how kinases regulate transcriptional activities of DNA/histone-modifying enzymes. Cell Biosci, 2022, 12(1): 83.
- 8. Xia J, Liu J, Xu F, et al. Proteomic profiling of lysine acetylation and succinylation in Staphylococcus aureus. Clin Transl Med, 2022, 12(10): e1058.
- 9. Macek B, Forchhammer K, Hardouin J, et al. Protein post-translational modifications in bacteria. Nat Rev Microbiol, 2019, 17(11): 651-664.
- 10. Yakubu RR, Nieves E, Weiss LM. The methods employed in mass spectrometric analysis of posttranslational modifications (PTMs) and protein-protein interactions (PPIs). Adv Exp Med Biol, 2019, 1140: 169-198.
- 11. Huang Y, Zhu C, Pan L, et al. The role of Mycobacterium tuberculosis acetyltransferase and protein acetylation modifications in tuberculosis. Front Cell Infect Microbiol, 2023, 13: 1218583.
- 12. Perry F, Johnson C, Aylward B, et al. The differential phosphorylation-dependent signaling and glucose immunometabolic responses induced during infection by Salmonella enteritidis and Salmonella heidelberg in chicken macrophage-like cells. Microorganisms, 2020, 8(7): 1041.
- 13. Yang H, Sha W, Liu Z, et al. Lysine acetylation of DosR regulates the hypoxia response of Mycobacterium tuberculosis. Emerg Microbes Infect, 2018, 7(1): 34.
- 14. Zhang D, Tang Z, Huang H, et al. Metabolic regulation of gene expression by histone lactylation. Nature, 2019, 574(7779): 575-580.
- 15. Ren H, Tang Y, Zhang D. The emerging role of protein L-lactylation in metabolic regulation and cell signalling. Nat Metab, 2025, 7(4): 647-664.
- 16. Li Z, Gong T, Wu Q, et al. Lysine lactylation regulates metabolic pathways and biofilm formation in Streptococcus mutans. Sci Signal, 2023, 16(801): eadg1849.
- 17. Wang Y, Liu Y, Xiang G, et al. Post-translational toxin modification by lactate controls Staphylococcus aureus virulence. Nat Commun, 2024, 15(1): 9835.
- 18. Zhang C, Zhou T, Li C, et al. Deciphering novel enzymatic and non-enzymatic lysine lactylation in Salmonella. Emerg Microbes Infect, 2025, 14(1): 2475838.
- 19. Dong H, Zhang J, Zhang H, et al. YiaC and CobB regulate lysine lactylation in Escherichia coli. Nat Commun, 2022, 13(1): 6628.
- 20. Wang J, Wang Z, Wang Q, et al. Ubiquitous protein lactylation in health and diseases. Cell Mol Biol Lett, 2024, 29(1): 23.
- 21. Zhao L, Qi H, Lv H, et al. Lactylation in health and disease: physiological or pathological?. Theranostics, 2025, 15(5): 1787-1821.
- 22. Gaffney DO, Jennings EQ, Anderson CC, et al. Non-enzymatic lysine lactoylation of glycolytic enzymes. Cell Chem Biol, 2020, 27(2): 206-213.
- 23. Li Q, Zhao R, Shen Y, et al. Lactylation in tumor immune escape and immunotherapy: multifaceted functions and therapeutic strategies. Research, 2025.
- 24. de Bari L, Scirè A, Minnelli C, et al. Interplay among oxidative stress, methylglyoxal pathway and S-glutathionylation. Antioxidants (Basel), 2020, 10(1): 19.
- 25. Anaya-Sanchez A, Feng Y, Berude JC, et al. Detoxification of methylglyoxal by the glyoxalase system is required for glutathione availability and virulence activation in Listeria monocytogenes. PLoS Pathog, 2021, 17(8): e1009819.
- 26. Galligan JJ, Wepy JA, Streeter MD, et al. Methylglyoxal-derived posttranslational arginine modifications are abundant histone marks. Proc Natl Acad Sci U S A, 2018, 115(37): 9228-9233.
- 27. Zhao W, Xin J, Yu X, et al. Recent advances of lysine lactylation in prokaryotes and eukaryotes. Front Mol Biosci, 2025, 11: 1510975.
- 28. Zong Z, Ren J, Yang B, et al. Emerging roles of lysine lactyltransferases and lactylation. Nat Cell Biol, 2025, 27(4): 563-574.
- 29. Li J, Ma P, Liu Z, et al. L-and D-lactate: unveiling their hidden functions in disease and health. Cell Commun Signal, 2025, 23(1): 134.
- 30. Iozzo M, Pardella E, Giannoni E, et al. The role of protein lactylation: a kaleidoscopic post-translational modification in cancer. Mol Cell, 2025, 85(7): 1263-1279.
- 31. Shi P, Ma Y, Zhang S. Non-histone lactylation: unveiling its functional significance. Front Cell Dev Biol, 2025, 13: 1535611.
- 32. Yang Y, He H, Liu B, et al. Protein lysine acetylation regulates oral microorganisms. Front Cell Infect Microbiol, 2025, 15: 1594947.
- 33. Christensen DG, Meyer JG, Baumgartner JT, et al. Identification of novel protein lysine acetyltransferases in Escherichia coli. mBio, 2018, 9(5): e01905-18.
- 34. Liu W, Tan Y, Cao S, et al. Protein acetylation mediated by YfiQ and CobB is involved in the virulence and stress response of Yersinia pestis. Infect Immun, 2018, 86(6): e00224-18.
- 35. Du R, Gao Y, Yan C, et al. Sirtuin 1/sirtuin 3 are robust lysine delactylases and sirtuin 1-mediated delactylation regulates glycolysis. iScience, 2024, 27(10): 110911.
- 36. Liu W, Yang R, Zhan Y, et al. Lactate and lactylation: emerging roles in autoimmune diseases and metabolic reprogramming. Front Immunol, 2025, 16: 1589853.
- 37. Curry AM, Rymarchyk S, Herrington NB, et al. Nicotinamide riboside activates SIRT5 deacetylation. FEBS J, 2023, 290(19): 4762-4776.
- 38. Rardin MJ, He W, Nishida Y, et al. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab, 2013, 18(6): 920-933.
- 39. Varner EL, Trefely S, Bartee D, et al. Quantification of lactoyl-CoA (lactyl-CoA) by liquid chromatography mass spectrometry in mammalian cells and tissues. Open Biol, 2020, 10(9): 200187.
- 40. Sgarra R, Battista S, Cerchia L, et al. Mechanism of action of lactic acid on histones in cancer. Antioxid Redox Signal, 2024, 40(4/5/6): 236-249.
- 41. Trujillo MN, Jennings EQ, Hoffman EA, et al. Lactoylglutathione promotes inflammatory signaling in macrophages through histone lactoylation. Mol Metab, 2024, 81: 101888.
- 42. Pan T, Pei Z, Fang Z, et al. Uncovering the specificity and predictability of tryptophan metabolism in lactic acid bacteria with genomics and metabolomics. Front Cell Infect Mic, 2023, 13: 1154346.
- 43. Gänzle MG. Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr Opin Food Sci, 2015, 2: 106-117.
- 44. Wilson WR, Gewitz M, Lockhart PB, et al. Prevention of viridans group streptococcal infective endocarditis: a scientific statement from the American Heart Association. Circulation, 2021, 143(20): e963-e978.
- 45. Lemos JA, Palmer SR, Zeng L, et al. The biology of Streptococcus mutans. Microbiol Spectr, 2019, 7(1): GPP3-0051-2018.
- 46. Zhang Q, Ma Q, Wang Y, et al. Molecular mechanisms of inhibiting glucosyltransferases for biofilm formation in Streptococcus mutans. Int J Oral Sci, 2021, 13(1): 30.
- 47. Soumya MP, Parameswaran R, Madhavan Nampoothiri K. Nisin controlled homologous over-expression of an exopolysaccharide biosynthetic glycosyltransferase gene for enhanced EPS production in Lactobacillus plantarum BR2. Bioresour Technol, 2023, 385: 129387.
- 48. Costa Oliveira BE, Cury JA, Ricomini Filho AP. Biofilm extracellular polysaccharides degradation during starvation and enamel demineralization. PLoS One, 2017, 12(7): e0181168.
- 49. Liu Y, Ren Z, Hwang G, et al. Therapeutic strategies targeting cariogenic biofilm microenvironment. Adv Dent Res, 2018, 29(1): 86-92.
- 50. Lin Y, Chen J, Zhou X, et al. Inhibition of Streptococcus mutans biofilm formation by strategies targeting the metabolism of exopolysaccharides. Crit Rev Microbiol, 2021, 47(5): 667-677.
- 51. Sonveaux P, Végran F, Schroeder T, et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest, 2008, 118(12): 3930-3942.
- 52. Pisarsky L, Bill R, Fagiani E, et al. Targeting metabolic symbiosis to overcome resistance to anti-angiogenic therapy. Cell Rep, 2016, 15(6): 1161-1174.
- 53. Cheung GYC, Bae JS, Otto M. Pathogenicity and virulence of Staphylococcus aureus. Virulence, 2021, 12(1): 547-569.
- 54. GBD 2019 Antimicrobial Resistance Collaborators. Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet, 2022, 400(10369): 2221-2248.
- 55. Berube BJ, Bubeck Wardenburg J. Staphylococcus aureus α-toxin: nearly a century of intrigue. Toxins (Basel), 2013, 5(6): 1140-1166.
- 56. Otto M. Staphylococcus aureus toxins. Curr Opin Microbiol, 2014, 17: 32-37.
- 57. Aires CP, Del Bel Cury AA, Tenuta LM, et al. Effect of starch and sucrose on dental biofilm formation and on root dentine demineralization. Caries Res, 2008, 42(5): 380-386.
- 58. Zeng L, Burne RA. Comprehensive mutational analysis of sucrose-metabolizing pathways in Streptococcus mutans reveals novel roles for the sucrose phosphotransferase system permease. J Bacteriol, 2013, 195(4): 833-843.
- 59. Bowen WH, Koo H. Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res, 2011, 45(1): 69-86.
- 60. Klahan P, Okuyama M, Jinnai K, et al. Engineered dextranase from Streptococcus mutans enhances the production of longer isomaltooligosaccharides. Biosci Biotechnol Biochem, 2018, 82(9): 1480-1487.
- 61. Kesavalu L, Lucas AR, Verma RK, et al. Increased atherogenesis during Streptococcus mutans infection in ApoE-null mice. J Dent Res, 2012, 91(3): 255-260.
- 62. Miyatani F, Kuriyama N, Watanabe I, et al. Relationship between Cnm-positive Streptococcus mutans and cerebral microbleeds in humans. Oral Dis, 2015, 21(7): 886-893.
- 63. Naka S, Wato K, Misaki T, et al. Streptococcus mutans induces IgA nephropathy-like glomerulonephritis in rats with severe dental caries. Sci Rep, 2021, 11(1): 5784.
- 64. Simic Z, Weiwad M, Schierhorn A, et al. The ε-amino group of protein lysine residues is highly susceptible to nonenzymatic acylation by several physiological acyl-coa thioesters. Chembiochem, 2015, 16(16): 2337-2347.
- 65. Wang ZA, Cole PA. The chemical biology of reversible lysine post-translational modifications. Cell Chem Biol, 2020, 27(8): 953-969.
- 66. Wang JX, Choi SYC, Niu X, et al. Lactic acid and an acidic tumor microenvironment suppress anticancer immunity. Int J Mol Sci, 2020, 21(21): 8363.
- 67. Aganja RP, Sivasankar C, Senevirathne A, et al. Salmonella as a promising curative tool against cancer. Pharmaceutics, 2022, 14(10): 2100.
- 68. Dai SK, Liu PP, Li X, et al. Dynamic profiling and functional interpretation of histone lysine crotonylation and lactylation during neural development. Development, 2022, 149(14): dev200049.