1. |
Long H, Liu Q, Yin H, et al. Prevalence trends of site-specific osteoarthritis from 1990 to 2019: Findings from the global burden of disease study 2019. Arthritis Rheumatol, 2022, 74(7): 1172-1183.
|
2. |
Adam MS, Zhuang H, Ren X, et al. The metabolic characteristics and changes of chondrocytes in vivo and in vitro in osteoarthritis. Front Endocrinol (Lausanne), 2024, 15: 1393550. doi: 10.3389/fendo.2024.1393550.
|
3. |
Buckwalter JA, Martin JA. Osteoarthritis. Adv Drug Deliv Rev, 2006, 58(2): 150-167.
|
4. |
Irnich D, Bäumler P. Concept for integrative pain treatment of osteoarthritis of the knee based on the evidence for conservative and complementary therapies. Schmerz, 2023, 37(6): 413-425.
|
5. |
Wieland HA, Michaelis M, Kirschbaum BJ, et al. Osteoarthritis—an untreatable disease? Nat Rev Drug Discov, 2005, 4(4): 331-344.
|
6. |
Price AJ, Alvand A, Troelsen A, et al. Knee replacement. Lancet, 2018, 392(10158): 1672-1682.
|
7. |
Kikuchi N, Kanamori A, Kadone H, et al. Varus knee osteoarthritis with ankle osteoarthritis demonstrates greater hindfoot inversion and larger ankle inversion loading during gait following total knee arthroplasty compared to varus knee osteoarthritis alone. Knee Surg Sports Traumatol Arthrosc, 2024, 32(9): 2309-2317.
|
8. |
Chen L, Zhang Z, Liu X. Role and mechanism of mechanical load in the homeostasis of the subchondral bone in knee osteoarthritis: A comprehensive review. J Inflamm Res, 2024, 17: 9359-9378.
|
9. |
Goldring SR. Role of bone in osteoarthritis pathogenesis. Med Clin North Am, 2009, 93(1): 25-35.
|
10. |
Quasnichka HL, Anderson-MacKenzie JM, Bailey AJ. Subchondral bone and ligament changes precede cartilage degradation in guinea pig osteoarthritis. Biorheology, 2006, 43(3, 4): 389-397.
|
11. |
Wong AKO, Naraghi AM, Probyn L. Individuals with knee osteoarthritis and osteoporosis represent a distinctive subgroup whose symptoms originate from differences in subchondral bone rather than cartilage. Calcif Tissue Int, 2024, 116(1): 5. doi: 10.1007/s00223-024-01315-z.
|
12. |
Burr DB, Gallant MA. Bone remodelling in osteoarthritis. Nat Rev Rheumatol, 2012, 8(11): 665-673.
|
13. |
Chen Y, Hu Y, Yu YE, et al. Subchondral trabecular rod loss and plate thickening in the development of osteoarthritis. J Bone Miner Res, 2018, 33(2): 316-327.
|
14. |
Goldring SR, Goldring MB. Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage-bone crosstalk. Nat Rev Rheumatol, 2016, 12(11): 632-644.
|
15. |
Day JS, Ding M, van der Linden JC, et al. A decreased subchondral trabecular bone tissue elastic modulus is associated with pre-arthritic cartilage damage. J Orthop Res, 2001, 19(5): 914-918.
|
16. |
韩龙飞, 林天烨, 何敏聪, 等. 胫骨平台下低密度区骨量及体积对下肢力线影响的有限元分析. 中国修复重建外科杂志, 2024, 38(6): 734-741.
|
17. |
Oláh T, Cucchiarini M, Madry H. Temporal progression of subchondral bone alterations in OA models involving induction of compromised meniscus integrity in mice and rats: A scoping review. Osteoarthritis Cartilage, 2024, 32(10): 1220-1234.
|
18. |
詹芝玮, 韦雨柔, 林天烨, 等. 膝骨关节炎内翻畸形与胫骨平台下低密度影面积的关联. 中华关节外科杂志 (电子版), 2023, 17(2): 209-215.
|
19. |
Yan M, Liang T, Zhao H, et al. Model properties and clinical application in the finite element analysis of knee joint: A review. Orthop Surg, 2024, 16(2): 289-302.
|
20. |
Tianye L, Peng Y, Jingli X, et al. Finite element analysis of different internal fixation methods for the treatment of Pauwels type Ⅲ femoral neck fracture. Biomed Pharmacother, 2019, 112: 108658. doi: 10.1016/j.biopha.2019.108658.
|
21. |
葛永军, 宣勇, 穆帅, 等. 膝关节盘状半月板有限元模型的构建及生物力学分析. 中国矫形外科杂志, 2019, 27(22): 2071-2075.
|
22. |
Choi YS, Yoon JR, Shin YB, et al. The difference in bone mineral density between femur and tibia is related to tibia deformation in endstage knee osteoarthritis. Knee, 2024, 51: 173-180.
|
23. |
Liu D, Miao Z, Zhang W, et al. Biomechanical analysis of different techniques for residual bone defect from tibial plateau bone cyst in total knee arthroplasty. Front Bioeng Biotechnol, 2024, 12: 1498882. doi: 10.3389/fbioe.2024.1498882.
|
24. |
Rasheed B, Bjelland Ø, Dalen AF, et al. Intraoperative identification of patient-specific elastic modulus of the meniscus during arthroscopy. Comput Methods Programs Biomed, 2024, 254: 108269. doi: 10.1016/j.cmpb.2024.108269.
|
25. |
Day GA, Jones AC, Mengoni M, et al. A finite element model to investigate the stability of osteochondral grafts within a human tibiofemoral joint. Ann Biomed Eng, 2024, 52(5): 1393-1402.
|
26. |
Rho JY, Hobatho MC, Ashman RB. Relations of mechanical properties to density and CT numbers in human bone. Med Eng Phys, 1995, 17(5): 347-355.
|
27. |
刘蒙飞, 马鹏程, 尹灿, 等. 不同骨密度对膝关节单髁置换后关节内各结构影响的三维有限元分析. 中国组织工程研究, 2024, 28(24): 3801-3806.
|
28. |
Wang Z, Ma R, Cai Z, et al. Biomechanical evaluation of stand-alone oblique lateral lumbar interbody fusion under 3 different bone mineral density conditions: A finite element analysis. World Neurosurg, 2021, 155: e285-e293.
|
29. |
Liu CD, Hu SJ, Chang SM, et al. Importance of the posterior plate in three-column tibial plateau fractures: A finite element analysis and clinical validation. Orthop Surg, 2024, 16(4): 930-942.
|
30. |
Kang KT, Koh YG, Son J, et al. A computational simulation study to determine the biomechanical influence of posterior condylar offset and tibial slope in cruciate retaining total knee arthroplasty. Bone Joint Res, 2018, 7(1): 69-78.
|
31. |
Ding K, Yang W, Wang H, et al. Finite element analysis of biomechanical effects of residual varus/valgus malunion after femoral fracture on knee joint. Int Orthop, 2021, 45(7): 1827-1835.
|
32. |
Trabelsi N, Yosibash Z, Milgrom C. Validation of subject-specific automated p-FE analysis of the proximal femur. J Biomech, 2009, 42(3): 234-241.
|
33. |
Pan CS, Wang X, Ding LZ, et al. The best position of bone grafts in the medial open-wedge high tibial osteotomy: A finite element analysis. Comput Methods Programs Biomed, 2023, 228: 107253. doi: 10.3389/fcell.2020.00694.
|
34. |
Taylor WR, Heller MO, Bergmann G, et al. Tibio-femoral loading during human gait and stair climbing. J Orthop Res, 2004, 22(3): 625-632.
|
35. |
Genda E, Iwasaki N, Li G, et al. Normal hip joint contact pressure distribution in single-leg standing—effect of gender and anatomic parameters. J Biomech, 2001, 34(7): 895-905.
|
36. |
Yang P, Lin TY, Xu JL, et al. Finite element modeling of proximal femur with quantifiable weight-bearing area in standing position. J Orthop Surg Res, 2020, 15(1): 384. doi: 10.1186/s13018-020-01927-9.
|
37. |
Zarka M, Hay E, Ostertag A, et al. Microcracks in subchondral bone plate is linked to less cartilage damage. Bone, 2019, 123: 1-7.
|
38. |
Yang Q, Zhu XY, Bao JY, et al. Medial meniscus posterior root tears and partial meniscectomy significantly increase stress in the knee joint during dynamic gait. Knee Surg Sports Traumatol Arthrosc, 2023, 31(6): 2289-2298.
|
39. |
Luczkiewicz P, Daszkiewicz K, Witkowski W, et al. The influence of a change in the meniscus cross-sectional shape on the medio-lateral translation of the knee joint and meniscal extrusion. PLoS One, 2018, 13(2): e0193020. doi: 10.1371/journal.pone.0193020.
|
40. |
Shriram D, Praveen Kumar G, Cui F, et al. Evaluating the effects of material properties of artificial meniscal implant in the human knee joint using finite element analysis. Sci Rep, 2017, 7(1): 6011. doi: 10.1038/s41598-017-06271-3.
|
41. |
Allaire R, Muriuki M, Gilbertson L, et al. Biomechanical consequences of a tear of the posterior root of the medial meniscus. Similar to total meniscectomy. J Bone Joint Surg (Am), 2008, 90(9): 1922-1931.
|
42. |
Perez-Blanca A, Espejo-Baena A, Amat Trujillo D, et al. Comparative biomechanical study on contact alterations after lateral meniscus posterior root avulsion, transosseous reinsertion, and total meniscectomy. Arthroscopy, 2016, 32(4): 624-633.
|
43. |
Wang Y, Fan Y, Zhang M. Comparison of stress on knee cartilage during kneeling and standing using finite element models. Med Eng Phys, 2014, 36(4): 439-447.
|
44. |
Fang J, Gong H, Kong L, et al. Simulation on the internal structure of three-dimensional proximal tibia under different mechanical environments. Biomed Eng Online, 2013, 12: 130. doi: 10.1186/1475-925X-12-130.
|
45. |
Makris EA, Hadidi P, Athanasiou KA. The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials, 2011, 32(30): 7411-7431.
|
46. |
Huang K, Cai H. The interplay between osteoarthritis and osteoporosis: Mechanisms, implications, and treatment considerations—A narrative review. Exp Gerontol, 2024, 197: 112614. doi: 10.1016/j.exger.2024.112614.
|
47. |
Anwar A, Hu Z, Zhang Y, et al. Multiple subchondral bone cysts cause deterioration of articular cartilage in medial OA of knee: A 3D simulation study. Front Bioeng Biotechnol, 2020, 8: 573938. doi: 10.3389/fbioe.2020.573938.
|
48. |
McErlain DD, Milner JS, Ivanov TG, et al. Subchondral cysts create increased intra-osseous stress in early knee OA: A finite element analysis using simulated lesions. Bone, 2011, 48(3): 639-646.
|
49. |
Berk AN, Cregar WM, Wang S, et al. The effect of lower limb alignment on tibiofemoral joint contact biomechanics after medial meniscus posterior root repair: A finite-element analysis. J Am Acad Orthop Surg, 2024, 32(11): e558-e567.
|
50. |
Ou D, Ye Y, Pan J, et al. Anterior cruciate ligament injury should not be considered a contraindication for medial unicompartmental knee arthroplasty: Finite element analysis. PLoS One, 2024, 19(3): e0299649. doi: 10.1371/journal.pone.0299649.
|
51. |
Shen X, Lu M, Liu M, et al. Effect of residual volume after surgery of the discoid lateral meniscus on tibiofemoral joint biomechanics: a finite element analysis. J Orthop Surg Res, 2024, 19(1): 43. doi: 10.1186/s13018-023-04522-w.
|
52. |
Chen H, Liu L, Zhang Y. Finite element analysis of the knee joint stress after partial meniscectomy for meniscus horizontal cleavage tears. BMC Musculoskelet Disord, 2023, 24(1): 744. doi: 10.1186/s12891-023-06868-y.
|
53. |
Wang S, Hase K, Kita S, et al. Biomechanical effects of medial meniscus radial tears on the knee joint during gait: A concurrent finite element musculoskeletal framework investigation. Front Bioeng Biotechnol, 2022, 10: 957435. doi: 10.3389/fbioe.2022.957435.
|
54. |
Bao HR, Zhu D, Gong H, et al. The effect of complete radial lateral meniscus posterior root tear on the knee contact mechanics: a finite element analysis. J Orthop Sci, 2013, 18(2): 256-263.
|
55. |
Dabiri Y, Li L. Focal cartilage defect compromises fluid-pressure dependent load support in the knee joint. Int J Numer Method Biomed Eng, 2015, 31(6). doi: 10.1002/cnm.2713.
|
56. |
Zhang K, Li L, Yang L, et al. The biomechanical changes of load distribution with longitudinal tears of meniscal horns on knee joint: a finite element analysis. J Orthop Surg Res, 2019, 14(1): 237. doi: 10.1186/s13018-019-1255-1.
|
57. |
Liu Y, Shah KM, Luo J. Strategies for articular cartilage repair and regeneration. Front Bioeng Biotechnol, 2021, 9: 770655. doi: 10.3389/fbioe.2021.770655.
|
58. |
Rim YA, Nam Y, Ju JH. The role of chondrocyte hypertrophy and senescence in osteoarthritis initiation and progression. Int J Mol Sci, 2020, 21(7). doi: 10.3390/ijms21072358.
|
59. |
Jia Y, Le H, Wang X, et al. Double-edged role of mechanical stimuli and underlying mechanisms in cartilage tissue engineering. Front Bioeng Biotechnol, 2023, 11: 1271762. doi: 10.3389/fbioe.2023.1271762.
|
60. |
Kakavand R, Rasoulian A, Otoo BS, et al. A numerical model for fibril remodeling in articular cartilage. Knee, 2023, 41: 83-96.
|
61. |
Brindle T, Nyland J, Johnson D L. The meniscus: review of basic principles with application to surgery and rehabilitation. J Athl Train, 2001, 36(2): 160-169.
|
62. |
Bell JS, Winlove CP, Smith CW, et al. Modeling the steady-state deformation of the solid phase of articular cartilage. Biomaterials, 2009, 30(31): 6394-6401.
|
63. |
Azari F, Uniyal P, Soete J, et al. Accuracy of photon-counting computed tomography for the measurement of bone quality in the knee. Bone, 2024, 181: 117027. doi: 10.1016/j.bone.2024.117027.
|