1. |
Akıncı O, Akalın Y. Medium-term results of single-stage posteromedial release and triple arthrodesis in treatment of neglected clubfoot deformity in adults. Acta Orthop Traumatol Turc, 2015, 49(2): 175-183.
|
2. |
Zhuang T, El-Banna G, Frick S. Arthrodesis of the foot or ankle in adult patients with congenital clubfoot. Cureus, 2019, 11(12): e6505. doi: 10.7759/cureus.6505.
|
3. |
Brodsky JW. The adult sequelae of treated congenital clubfoot. Foot Ankle Clin, 2010, 15(2): 287-296.
|
4. |
Klerken T, Kosse NM, Aarts CAM, et al. Long-term results after triple arthrodesis: Influence of alignment on ankle osteoarthritis and clinical outcome. Foot Ankle Surg, 2019, 25(2): 247-250.
|
5. |
Aarts CA, Heesterbeek PJ, Jaspers PE, et al. Does osteoarthritis of the ankle joint progress after triple arthrodesis? A midterm prospective outcome study. Foot Ankle Surg, 2016, 22(4): 265-269.
|
6. |
Hentges MJ, Gesheff MG, Lamm BM. Realignment subtalar joint arthrodesis. J Foot Ankle Surg, 2016, 55(1): 16-21.
|
7. |
Buck FM, Hoffmann A, Mamisch-Saupe N, et al. Diagnostic performance of MRI measurements to assess hindfoot malalignment. An assessment of four measurement techniques. Eur Radiol, 2013, 23(9): 2594-2601.
|
8. |
Haight HJ, Dahm DL, Smith J, et al. Measuring standing hindfoot alignment: reliability of goniometric and visual measurements. Arch Phys Med Rehabil, 2005, 86(3): 571-575.
|
9. |
Goyal N, Barik S, Singh V, et al. Assessment of severity of clubfoot in walking children by combined multiple tools: A new classification system. Foot (Edinb), 2020. doi: 10.1016/j.foot.2020.101718.
|
10. |
Nie W, Gu F, Wang Z, et al. Preliminary application of three-dimension printing technology in surgical management of bicondylar tibial plateau fractures. Injury, 2019, 50(2): 476-483.
|
11. |
Akrami M, Qian Z, Zou Z, et al. Subject-specific finite element modelling of the human foot complex during walking: sensitivity analysis of material properties, boundary and loading conditions. Biomech Model Mechanobiol, 2018, 17(2): 559-576.
|
12. |
Moayedi M, Arshi AR, Salehi M, et al. Associations between changes in loading pattern, deformity, and internal stresses at the foot with hammer toe during walking; a finite element approach. Comput Biol Med, 2021, 135: 104598. doi: 10.1016/j.compbiomed.2021.104598.
|
13. |
Bocanegra MAM, López JB, Vidal-Lesso A, et al. Numerical assessment of the structural effects of relative sliding between tissues in a finite element model of the foot. Mathematics, 2021, 9(15): 1719. doi: 10.3390/math9151719.
|
14. |
Wang C, He X, Zhang Z, et al. Three-dimensional finite element analysis and biomechanical analysis of midfoot von mises stress levels in flatfoot, clubfoot, and Lisfranc joint injury. Med Sci Monit, 2021, 27: e931969. doi: 10.12659/MSM.931969.
|
15. |
Graf AN, Kuo KN, Kurapati NT, et al. A long-term follow-up of young adults with idiopathic clubfoot: Does foot morphology relate to pain? J Pediatr Orthop, 2019, 39(10): 527-533.
|
16. |
Hu X, Zhong M, Lou Y, et al. Clinical application of individualized 3D-printed navigation template to children with cubitus varus deformity. J Orthop Surg Res, 2020, 15(1): 111. doi: 10.1186/s13018-020-01615-8.
|
17. |
Li S, Myerson MS. Surgical management of the undercorrected and overcorrected severe club foot deformity. Foot Ankle Clin, 2022, 27(2): 491-512.
|
18. |
Mo F, Li Y, Li J, et al. A three-dimensional finite element foot-ankle model and its personalisation methods analysis. International Journal of Mechanical Sciences, 2022. doi: 10.1016/j.ijmecsci.2022.107108.
|
19. |
Darwich A, Nazha H, Nazha A, et al. Bio-numerical analysis of the human ankle-foot model corresponding to neutral standing condition. J Biomed Phys Eng, 2020, 10(5): 645-650.
|
20. |
Mercan N, Yıldırım A, Dere Y. Biomechanical analysis of tibiofibular syndesmosis injury fixation methods: A finite element analysis. J Foot Ankle Surg, 2023, 62(1): 107-114.
|
21. |
Li J, Wang Y, Wei Y, et al. The effect of talus osteochondral defects of different area size on ankle joint stability: a finite element analysis. BMC Musculoskelet Disord, 2022, 23(1): 500. doi: 10.1186/s12891-022-05450-2.
|
22. |
Myller KAH, Korhonen RK, Töyräs J, et al. Computational evaluation of altered biomechanics related to articular cartilage lesions observed in vivo. J Orthop Res, 2019, 37(5): 1042-1051.
|
23. |
Zhang Y, Awrejcewicz J, Szymanowska O, et al. Effects of severe hallux valgus on metatarsal stress and the metatarsophalangeal loading during balanced standing: A finite element analysis. Comput Biol Med, 2018, 97: 1-7.
|
24. |
Yu J, Zhao D, Chen WM, et al. Finite element stress analysis of the bearing component and bone resected surfaces for total ankle replacement with different implant material combinations. BMC Musculoskelet Disord, 2022, 23(1): 70. doi: 10.1186/s12891-021-04982-3.
|
25. |
Mazzoli D, Giannotti E, Rambelli C, et al. Long-term effects on body functions, activity and participation of hemiplegic patients in equino varus foot deformity surgical correction followed by immediate rehabilitation. A prospective observational study. Top Stroke Rehabil, 2019, 26(7): 518-522.
|
26. |
Wang Y, Li Z, Wong DW, et al. Finite element analysis of biomechanical effects of total ankle arthroplasty on the foot. J Orthop Translat, 2017, 12: 55-65.
|
27. |
Yang Z, Liu F, Cui L, et al. Adult rigid flatfoot: Triple arthrodesis and osteotomy. Medicine (Baltimore), 2020, 99(7): e18826. doi: 10.1097/MD.0000000000018826.
|
28. |
Trad Z, Barkaoui A, Chafra M, et al. Finite element analysis of the effect of high tibial osteotomy correction angle on articular cartilage loading. Proc Inst Mech Eng H, 2018, 232(6): 553-564.
|