1. |
Groenewegen A, Rutten FH, Mosterd A, et al. Epidemiology of heart failure. Eur J Heart Fail, 2020, 22(8): 1342-1356.
|
2. |
Aimo A, Castiglione V, Borrelli C, et al. Oxidative stress and inflammation in the evolution of heart failure: From pathophysiology to therapeutic strategies. Eur J Prev Cardiol, 2020, 27(5): 494-510.
|
3. |
Savarese G, Becher PM, Lund LH, et al. Global burden of heart failure: A comprehensive and updated review of epidemiology. Cardiovasc Res, 2023, 118(17): 3272-3287.
|
4. |
Tahir S, Steffens S. Nonclassical monocytes in cardiovascular physiology and disease. Am J Physiol Cell Physiol, 2021, 320(5): C761-C770.
|
5. |
Adamo L, Rocha-Resende C, Prabhu SD, et al. Reappraising the role of inflammation in heart failure. Nat Rev Cardiol, 2020, 17(5): 269-285.
|
6. |
Zhou J, Bai W, Liu Q, et al. Intermittent hypoxia enhances THP-1 monocyte adhesion and chemotaxis and promotes M1 macrophage polarization via RAGE. Biomed Res Int, 2018, 2018: 1650456.
|
7. |
Hanna A, Frangogiannis NG. Inflammatory cytokines and chemokines as therapeutic targets in heart failure. Cardiovasc Drugs Ther, 2020, 34(6): 849-863.
|
8. |
Majmundar M, Kansara T, Park H, et al. Absolute lymphocyte count as a predictor of mortality and readmission in heart failure hospitalization. Int J Cardiol Heart Vasc, 2022, 39: 100981.
|
9. |
Wang Z, Chen S, Zhu Q, et al. Using a two-sample mendelian randomization method in assessing the causal relationships between human blood metabolites and heart failure. Front Cardiovasc Med, 2021, 8: 695480.
|
10. |
Capone F, Sotomayor-Flores C, Bode D, et al. Cardiac metabolism in HFpEF: From fuel to signalling. Cardiovasc Res, 2023, 118(18): 3556-3575.
|
11. |
Pérez-Carrillo L, Giménez-Escamilla I, Martínez-Dolz L, et al. Implication of sphingolipid metabolism gene dysregulation and cardiac sphingosine-1-phosphate accumulation in heart failure. Biomedicines, 2022, 10(1): 135.
|
12. |
Thorp EB, Karlstaedt A. Intersection of immunology and metabolism in myocardial disease. Circ Res, 2024, 134(12): 1824-1840.
|
13. |
Trindade BC, Ceglia S, Berthelette A, et al. The cholesterol metabolite 25-hydroxycholesterol restrains the transcriptional regulator SREBP2 and limits intestinal IgA plasma cell differentiation. Immunity, 2021, 54(10): 2273-2287.
|
14. |
Wang Q, Dai H, Hou T, et al. Dissecting causal relationships between gut microbiota, blood metabolites, and stroke: A Mendelian randomization study. J Stroke, 2023, 25(3): 350-360.
|
15. |
Birney E. Mendelian randomization. Cold Spring Harb Perspect Med, 2022, 12(4): a041302.
|
16. |
Orrù V, Steri M, Sidore C, et al. Complex genetic signatures in immune cells underlie autoimmunity and inform therapy. Nat Genet, 2020, 52(10): 1036-1045.
|
17. |
Chen Y, Lu T, Pettersson-Kymmer U, et al. Genomic atlas of the plasma metabolome prioritizes metabolites implicated in human diseases. Nat Genet, 2023, 55(1): 44-53.
|
18. |
Sun BB, Kurki MI, Foley CN, et al. Genetic associations of protein-coding variants in human disease. Nature, 2022, 603(7899): 95-102.
|
19. |
Yu XH, Yang YQ, Cao RR, et al. The causal role of gut microbiota in development of osteoarthritis. Osteoarthritis Cartilage, 2021, 29(12): 1741-1750.
|
20. |
Wang C, Zhu D, Zhang D, et al. Causal role of immune cells in schizophrenia: Mendelian randomization (MR) study. BMC Psychiatry, 2023, 23(1): 590.
|
21. |
Guo MN, Hao XY, Tian J, et al. Human blood metabolites and lacunar stroke: A Mendelian randomization study. Int J Stroke, 2023, 18(1): 109-116.
|
22. |
Ming R, Wu H, Liu H, et al. Causal effects and metabolites mediators between immune cell and risk of breast cancer: A Mendelian randomization study. Front Genet, 2024, 15: 1380249.
|
23. |
Yuan J, Xiong X, Zhang B, et al. Genetically predicted C-reactive protein mediates the association between rheumatoid arthritis and atlantoaxial subluxation. Front Endocrinol (Lausanne), 2022, 13: 1054206.
|
24. |
Li YS, Xia YG, Liu YL, et al. Metabolic-dysfunction associated steatotic liver disease-related diseases, cognition and dementia: A two-sample mendelian randomization study. PLoS One, 2024, 19(2): e0297883.
|
25. |
Cheng ZX, Hua JL, Jie ZJ, et al. Genetic insights into the gut-lung axis: Mendelian Randomization analysis on gut microbiota, lung function, and COPD. Int J Chron Obstruct Pulmon Dis, 2024, 19: 643-653.
|
26. |
Davies NM, Holmes MV, Davey Smith G. Reading Mendelian randomisation studies: A guide, glossary, and checklist for clinicians. BMJ, 2018, 362: k601.
|
27. |
Huang YL, Zheng JM, Shi ZY, et al. Inflammatory proteins may mediate the causal relationship between gut microbiota and inflammatory bowel disease: A mediation and multivariable Mendelian randomization study. Medicine (Baltimore), 2024, 103(25): e38551.
|
28. |
Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol, 2017, 32(5): 377-389.
|
29. |
Verbanck M, Chen CY, Neale B, et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet, 2018, 50(5): 693-698.
|
30. |
Carter AR, Sanderson E, Hammerton G, et al. Mendelian randomisation for mediation analysis: current methods and challenges for implementation. Eur J Epidemiol, 2021, 36(5): 465-478.
|
31. |
Oh ES, Na M, Rogers CJ. The association between monocyte subsets and cardiometabolic disorders/cardiovascular disease: A systematic review and meta-analysis. Front Cardiovasc Med, 2021, 8: 640124.
|
32. |
Peng Q, Qiu X, Zhang Z, et al. PD-L1 on dendritic cells attenuates T cell activation and regulates response to immune checkpoint blockade. Nat Commun, 2020, 11(1): 4835.
|
33. |
Ożańska A, Szymczak D, Rybka J. Pattern of human monocyte subpopulations in health and disease. Scand J Immunol, 2020, 92(1): e12883.
|
34. |
Boyette LB, Macedo C, Hadi K, et al. Phenotype, function, and differentiation potential of human monocyte subsets. PLoS One, 2017, 12(4): e0176460.
|
35. |
Bianchini M, Duchêne J, Santovito D, et al. PD-L1 expression on nonclassical monocytes reveals their origin and immunoregulatory function. Sci Immunol, 2019, 4(36): eaar3054.
|
36. |
Ryan S, Arnaud C, Fitzpatrick SF, et al. Adipose tissue as a key player in obstructive sleep apnoea. Eur Respir Rev, 2019, 28(152): 190006.
|
37. |
Miyazaki S, Fujisue K, Yamanaga K, et al. Prognostic significance of soluble PD-L1 on cardiovascular outcomes in patients with coronary artery disease. J Atheroscler Thromb, 2024, 31(4): 355-367.
|
38. |
Kushnareva E, Kushnarev V, Artemyeva A, et al. Myocardial PD-L1 expression in patients with ischemic and non-ischemic heart failure. Front Cardiovasc Med, 2022, 8: 759972.
|
39. |
Choudhary A, Brinkley DM, Besharati S, et al. PD-L1 (programmed death ligand 1) as a marker of acute cellular rejection after heart transplantation. Circ Heart Fail, 2021, 14(10): e008563.
|
40. |
Mir FA, Ullah E, Mall R, et al. Dysregulated metabolic pathways in subjects with obesity and metabolic syndrome. Int J Mol Sci, 2022, 23(17): 9821.
|
41. |
Borodzicz-Jażdżyk S, Jażdżyk P, Łysik W, et al. Sphingolipid metabolism and signaling in cardiovascular diseases. Front Cardiovasc Med, 2022, 9: 915961.
|
42. |
Lemaitre RN, Jensen PN, Hoofnagle A, et al. Plasma ceramides and sphingomyelins in relation to heart failure risk. Circ Heart Fail, 2019, 12(7): e005708.
|
43. |
Jozefczuk E, Guzik TJ, Siedlinski M. Significance of sphingosine-1-phosphate in cardiovascular physiology and pathology. Pharmacol Res, 2020, 156: 104793.
|
44. |
Lemaitre RN, McKnight B, Sotoodehnia N, et al. Circulating very long-chain saturated fatty acids and heart failure: The cardiovascular health study. J Am Heart Assoc, 2018, 7(21): e010019.
|
45. |
Stenemo M, Ganna A, Salihovic S, et al. The metabolites urobilin and sphingomyelin (30: 1) are associated with incident heart failure in the general population. ESC Heart Fail, 2019, 6(4): 764-773.
|
46. |
Mueller-Hennessen M, Düngen HD, Lutz M, et al. A novel lipid biomarker panel for the detection of heart failure with reduced ejection fraction. Clin Chem, 2017, 63(1): 267-277.
|
47. |
Lemaitre RN, Jensen PN, Hoofnagle A, et al. Plasma ceramides and sphingomyelins in relation to heart failure risk. Circ Heart Fail, 2019, 12(7): e005708.
|
48. |
Peters L, Kuebler WM, Simmons S. Sphingolipids in atherosclerosis: Chimeras in structure and function. Int J Mol Sci, 2022, 23(19): 11948.
|
49. |
Gaggini M, Fenizia S, Vassalle C. Sphingolipid levels and signaling via resveratrol and antioxidant actions in cardiometabolic risk and disease. Antioxidants (Basel), 2023, 12(5): 1102.
|