1. |
Chioncel O, Čelutkienė J, Bělohlávek J, et al. Heart failure care in the Central and Eastern Europe and Baltic region: Status, barriers, and routes to improvement. ESC Heart Fail, 2024, 11(4): 1861-1874.
|
2. |
Lund LH, Khush KK, Cherikh WS, et al. The Registry of the International Society for Heart and Lung Transplantation: Thirty-fourth Adult Heart Transplantation Report-2017; Focus Theme: Allograft ischemic time. J Heart Lung Transplant, 2017, 36(10): 1037-1046.
|
3. |
Boulet J, Wanderley MRB, Mehra MR. Contemporary left ventricular assist device therapy as a bridge or alternative to transplantation. Transplantation, 2024, 108(6): 1333-1341.
|
4. |
Aaronson KD, Slaughter MS, Miller LW, et al. Use of an intrapericardial, continuous-flow, centrifugal pump in patients awaiting heart transplantation. Circulation, 2012, 125(25): 3191-3200.
|
5. |
Wang J, Okoh AK, Chen Y, et al. Association of psychosocial risk factors with quality of life and readmissions 1 year after LVAD implantation. J Card Fail, 2025, 31(1): 40-48.
|
6. |
Lowey SE. Palliative care in the management of patients with advanced heart failure. Adv Exp Med Biol, 2018, 1067: 295-311.
|
7. |
Lee S, Kamdar F, Madlon-Kay R, et al. Effects of the HeartMate Ⅱ continuous-flow left ventricular assist device on right ventricular function. J Heart Lung Transplant, 2010, 29(2): 209-215.
|
8. |
Morgan JA, Paone G, Nemeh HW, et al. Impact of continuous-flow left ventricular assist device support on right ventricular function. J Heart Lung Transplant, 2013, 32(4): 398-403.
|
9. |
Kormos RL, Teuteberg JJ, Pagani FD, et al. Right ventricular failure in patients with the HeartMate Ⅱ continuous-flow left ventricular assist device: Incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg, 2010, 139(5): 1316-1324.
|
10. |
Hayashi H, Kirschner M, Vinogradsky A, et al. Acute right ventricular geometric change predicts outcomes in HeartMate 3 patients. J Heart Lung Transplant, 2024, 43(4): 642-651.
|
11. |
Atluri P, Fairman AS, MacArthur JW, et al. Continuous flow left ventricular assist device implant significantly improves pulmonary hypertension, right ventricular contractility, and tricuspid valve competence. J Card Surg, 2013, 28(6): 770-775.
|
12. |
Giannakoulas G, Klok FA. The ESC working group on pulmonary circulation and right ventricular function. Eur Heart J, 2024, 45(31): 2805-2807.
|
13. |
Bravo CA, Navarro AG, Dhaliwal KK, et al. Right heart failure after left ventricular assist device: From mechanisms to treatments. Front Cardiovasc Med, 2022, 9: 1023549.
|
14. |
Hayek S, Sims DB, Markham DW, et al. Assessment of right ventricular function in left ventricular assist device candidates. Circ Cardiovasc Imaging, 2014, 7(2): 379-389.
|
15. |
Drakos SG, Kfoury AG, Selzman CH, et al. Left ventricular assist device unloading effects on myocardial structure and function: current status of the field and call for action. Curr Opin Cardiol, 2011, 26(3): 245-255.
|
16. |
Chamogeorgakis T, Toumpoulis I, Bonios MJ, et al. Treatment strategies and outcomes of right ventricular failure post left ventricular assist device implantation: An INTERMACS analysis. ASAIO J, 2024, 70(4): 264-271.
|
17. |
Kalogeropoulos AP, Kelkar A, Weinberger JF, et al. Validation of clinical scores for right ventricular failure prediction after implantation of continuous-flow left ventricular assist devices. J Heart Lung Transplant, 2015, 34(12): 1595-1603.
|
18. |
Bellavia D, Iacovoni A, Scardulla C, et al. Prediction of right ventricular failure after ventricular assist device implant: Systematic review and meta-analysis of observational studies. Eur J Heart Fail, 2017, 19(7): 926-946.
|
19. |
Lampert BC, Teuteberg JJ. Right ventricular failure after left ventricular assist devices. J Heart Lung Transplant, 2015, 34(9): 1123-1130.
|
20. |
Kirklin JK, Naftel DC, Kormos RL, et al. The Fourth INTERMACS Annual Report: 4, 000 implants and counting. J Heart Lung Transplant, 2012, 31(2): 117-126.
|
21. |
Song N, Hungerford SL, Barua S, et al. The right ventricular-arterial compliance index: A novel hemodynamic marker to predict right heart failure following left ventricular assist device. ASAIO J, 2025, 71(2): 111-119.
|
22. |
Fitzpatrick JR, Frederick JR, Hiesinger W, et al. Early planned institution of biventricular mechanical circulatory support results in improved outcomes compared with delayed conversion of a left ventricular assist device to a biventricular assist device. J Thorac Cardiovasc Surg, 2009, 137(4): 971-977.
|
23. |
Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults: A report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr, 2010, 23(7): 685-713.
|
24. |
Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging, 2015, 16(3): 233-270.
|
25. |
Abbas AE, Fortuin FD, Schiller NB, et al. A simple method for noninvasive estimation of pulmonary vascular resistance. J Am Coll Cardiol, 2003, 41(6): 1021-1027.
|
26. |
Hahn RT, Abraham T, Adams MS, et al. Guidelines for performing a comprehensive transesophageal echocardiographic examination: recommendations from the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists. Anesth Analg, 2014, 118(1): 21-68.
|
27. |
Grapsa J, O’Regan DP, Pavlopoulos H et al. Right ventricular remodelling in pulmonary arterial hypertension with CMR imaging: Clinical and prognostic implications. Eur J Clin Invest, 2015, 45: 914-924.
|
28. |
Bogaert J, Francone M. Cardiovascular magnetic resonance in pericardial diseases. J Cardiovasc Magn Reson, 2009, 11(1): 14.
|
29. |
Meineri M, Van Rensburg AE, Vegas A. Right ventricular failure after LVAD implantation: Prevention and treatment. Best Pract Res Clin Anaesthesiol, 2012, 26(2): 217-229.
|
30. |
Patel ND, Weiss ES, Schaffer J, et al. Right heart dysfunction after left ventricular assist device implantation: A comparison of the pulsatile HeartMate Ⅰ and axial-flow HeartMate Ⅱ devices. Ann Thorac Surg, 2008, 86(3): 832-840.
|
31. |
Maisel AS, Krishnaswamy P, Nowak RM, et al. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med, 2002, 347(3): 161-167.
|
32. |
Sandek A, Edelmann F, Gertler C, et al. Transition from asymptomatic to symptomatic systolic chronic heart failure: rationale and design of TransitionCHF. ESC Heart Fail, 2024, 11(4): 2366-2378.
|
33. |
Nohria A, Tsang SW, Fang JC, et al. Clinical assessment identifies hemodynamic profiles that predict outcomes in patients admitted with heart failure. J Am Coll Cardiol, 2003, 41(10): 1797-1804.
|
34. |
Atluri P, Goldstone AB, Fairman AS, et al. Predicting right ventricular failure in the modern, continuous flow left ventricular assist device era. Ann Thorac Surg, 2013, 96(3): 857-863.
|
35. |
Soliman OII, Akin S, Muslem R, et al. Derivation and validation of a novel right-sided heart failure model after implantation of continuous flow left ventricular assist devices: The EUROMACS (European Registry for Patients with Mechanical Circulatory Support) right-sided heart failure risk score. Circulation, 2018, 137(9): 891-906.
|
36. |
Fitzpatrick JR, Frederick JR, Hsu VM, et al. Risk score derived from pre-operative data analysis predicts the need for biventricular mechanical circulatory support. J Heart Lung Transplant, 2008, 27(12): 1286-1292.
|
37. |
Koprivanac M, Kelava M, Sirić F, et al. Predictors of right ventricular failure after left ventricular assist device implantation. Croat Med J, 2014, 55(6): 587-595.
|
38. |
Klotz S, Barbone A, Reiken S, et al. Left ventricular assist device support normalizes left and right ventricular beta-adrenergic pathway properties. J Am Coll Cardiol, 2005, 45(5): 668-676.
|
39. |
Takeda K, Takayama H, Colombo PC, et al. Incidence and clinical significance of late right heart failure during continuous-flow left ventricular assist device support. J Heart Lung Transplant, 2015, 34(8): 1024-1032.
|
40. |
Haddad F, Hunt SA, Rosenthal DN, et al. Right ventricular function in cardiovascular disease, part Ⅰ: Anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation, 2008, 117(11): 1436-1448.
|
41. |
Mauritz GJ, Kind T, Marcus JT, et al. Progressive changes in right ventricular geometric shortening and long-term survival in pulmonary arterial hypertension. Chest, 2012, 141(4): 935-943.
|
42. |
Noguchi M, Kasai K, Honda S, et al. Jugular venous response for risk stratification in heart failure. Cureus, 2024, 16(4): e58423.
|
43. |
Konstam MA, Kiernan MS, Bernstein D, et al. Evaluation and management of right-sided heart failure: A scientific statement from the American Heart Association. Circulation, 2018, 137(20): e578-e622.578-622.
|
44. |
Tie H, Li T, Huang B, et al. Presence and impact of anemia in patients supported with left ventricular assist devices. J Heart Lung Transplant, 2023, 42(9): 1261-1274.
|
45. |
Ayyagari K, Mulvoy WP, Bracey AW, et al. Perioperative management of LVAD patients. Morgan JA, Civitello AB, Frazier OH, eds. Mechanical Circulatory Support for Advanced Heart Failure: A Texas Heart Institute/Baylor College of Medicine Approach. Springer International Publishing, 2018: 95-127.
|
46. |
Yost G, Tatooles A, Bhat G. Preoperative nutritional assessment with the prognostic nutrition index in patients undergoing left ventricular assist device implantation. ASAIO J, 2018, 64(1): 52-55.
|
47. |
Genev I, Yost G, Gregory M, et al. Improved nutrition status in patients with advanced heart failure implanted with a left ventricular assist device. Nutr Clin Pract, 2019, 34(3): 444-449.
|
48. |
Huang D, Lacombe P, Gulati G, et al. Association of diuretic requirement and right heart failure post-LVAD implantation. JHLT Open, 2024, 4: 100082.
|
49. |
Tedford RJ, Hemnes AR, Russell SD, et al. PDE5A inhibitor treatment of persistent pulmonary hypertension after mechanical circulatory support. Circ Heart Fail, 2008, 1(4): 213-219.
|
50. |
Haddad F, Doyle R, Murphy DJ, et al. Right ventricular function in cardiovascular disease, part Ⅱ: pathophysiology, clinical importance, and management of right ventricular failure. Circulation, 2008, 117(13): 1717-1731.
|
51. |
Potapov EV, Antonides C, Crespo-Leiro MG, et al. 2019 EACTS expert consensus on long-term mechanical circulatory support. Eur J Cardiothorac Surg, 2019, 56(2): 230-270.
|
52. |
Zhang B, Guo S, Fu Z, et al. Minimally invasive versus conventional continuous-flow left ventricular assist device implantation for heart failure: A meta-analysis. Heart Fail Rev, 2022, 27(4): 1053-1061.
|
53. |
Quader M, LaPar DJ, Wolfe L, et al. Blood product utilization with left ventricular assist device implantation: A decade of statewide data. ASAIO J, 2016, 62(3): 268-273.
|
54. |
Swetz KM, Freeman MR, Mueller PS, et al. Clinical management of continuous-flow left ventricular assist devices in advanced heart failure. J Heart Lung Transplant, 2010, 29(9): 1081.
|
55. |
Drakos SG, Janicki L, Horne BD, et al. Risk factors predictive of right ventricular failure after left ventricular assist device implantation. Am J Cardiol, 2010, 105(7): 1030-1035.
|
56. |
Riebandt J, Haberl T, Wiedemann D, et al. Extracorporeal membrane oxygenation support for right ventricular failure after left ventricular assist device implantation. Eur J Cardiothorac Surg, 2018, 53(3): 590-595.
|
57. |
Antoniou T, Prokakis C, Athanasopoulos G, et al. Inhaled nitric oxide plus iloprost in the setting of post-left assist device right heart dysfunction. Ann Thorac Surg, 2012, 94(3): 792-798.
|
58. |
Sabato LA, Salerno DM, Moretz JD, et al. Inhaled pulmonary vasodilator therapy for management of right ventricular dysfunction after left ventricular assist device placement and cardiac transplantation. Pharmacotherapy, 2017, 37(8): 944-955.
|
59. |
Saeed D, Feldman D, Banayosy AE, et al. The 2023 International Society for Heart and Lung Transplantation guidelines for mechanical circulatory support: A 10-year update. J Heart Lung Transplant, 2023, 42(7): e1-e222.
|
60. |
Cameli M, Lisi M, Righini FM, et al. Speckle tracking echocardiography as a new technique to evaluate right ventricular function in patients with left ventricular assist device therapy. J Heart Lung Transplant, 2013, 32(4): 424-430.
|
61. |
Pirbodaghi T, Axiak S, Weber A, et al. Pulsatile control of rotary blood pumps: Does the modulation waveform matter? J Thorac Cardiovasc Surg, 2012, 144(4): 970-977.
|
62. |
Fetanat M, Stevens M, Hayward C, et al. A sensorless control system for an implantable heart pump using a real-time deep convolutional neural network. IEEE Trans Biomed Eng, 2021, 68(10): 3029-3038.
|
63. |
Rogers JG, Pagani FD, Tatooles AJ, et al. Intrapericardial left ventricular assist device for advanced heart failure. N Engl J Med, 2017, 376(5): 451-460.
|
64. |
Gregory SD, Timms D, Gaddum N, et al. Biventricular assist devices: A technical review. Ann Biomed Eng, 2011, 39(9): 2313-2328.
|
65. |
Ahmed MM, Jacobs JP, Meece LE, et al. Timing and outcomes of concurrent and sequential biventricular assist device implantation: A Society of Thoracic Surgeons Intermacs analysis. Ann Thorac Surg, 2023, 116(2): 383-390.
|
66. |
Makkar RR, Smith RR, Cheng K, et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): A prospective, randomised phase 1 trial. Lancet, 2012, 379(9819): 895-904.
|
67. |
Qiu R, Zhang X, Song C, et al. E-cardiac patch to sense and repair infarcted myocardium. Nat Commun, 2024, 15(1): 4133.
|
68. |
Kawai Y, Tohyama S, Arai K, et al. Scaffold-free tubular engineered heart tissue from human induced pluripotent stem cells using bio-3D printing technology in vivo. Front Cardiovasc Med, 2022, 8: 806215.
|
69. |
Peirlinck M, Costabal FS, Yao J, et al. Precision medicine in human heart modeling: Perspectives, challenges, and opportunities. Biomech Model Mechanobiol, 2021, 20(3): 803-831.
|
70. |
Mathur P, Srivastava S, Xu X, et al. Artificial intelligence, machine learning, and cardiovascular disease. Clin Med Insights Cardiol, 2020, 14: 1179546820927404.
|
71. |
Thohan V, Abraham J, Burdorf A, et al. Use of a pulmonary artery pressure sensor to manage patients with left ventricular assist devices. Circ Heart Fail, 2023, 16(6): e009960.
|
72. |
Inglis SC, Clark RA, Dierckx R, et al. Structured telephone support or non-invasive telemonitoring for patients with heart failure. Cochrane Database Syst Rev, 2015, 2015(10): CD007228.
|
73. |
Batchelor WB, Anwaruddin S, Wang DD, et al. The multidisciplinary heart team in cardiovascular medicine: Current role and future challenges. JACC Adv, 2023, 2(1): 100160.
|
74. |
Jefferson HL, Kent WDT, MacQueen KT, et al. Left ventricular assist devices: A comprehensive review of major clinical trials, devices, and future directions. J Card Surg, 2021, 36(4): 1480-1491.
|
75. |
Morales DLS, Rossano JW, VanderPluym C, et al. Third annual pediatric interagency registry for mechanical circulatory support (Pedimacs) report: Preimplant characteristics and outcomes. Ann Thorac Surg, 2019, 107(4): 993-1004.
|
76. |
Yasmin F, Shah SMI, Naeem A, et al. Artificial intelligence in the diagnosis and detection of heart failure: The past, present, and future. Rev Cardiovasc Med, 2021, 22(4): 1095-1113.
|