1. |
Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2024, 74(3): 229-263.
|
2. |
Vicidomini G. Current challenges and future advances in lung cancer: Genetics, instrumental diagnosis and treatment. Cancers (Basel), 2023, 15(14): 3710.
|
3. |
Karimi N, Moghaddam SJ. KRAS-mutant lung cancer: Targeting molecular and immunologic pathways, therapeutic advantages and restrictions. Cells, 2023, 12(5): 749.
|
4. |
Asmamaw MD, Shi XJ, Zhang LR, et al. A comprehensive review of SHP2 and its role in cancer. Cell Oncol (Dordr), 2022, 45(5): 729-753.
|
5. |
Chen YN, LaMarche MJ, Chan HM, et al. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature, 2016, 535(7610): 148-152.
|
6. |
Hao HX, Wang H, Liu C, et al. Tumor intrinsic efficacy by SHP2 and RTK inhibitors in KRAS-mutant cancers. Mol Cancer Ther, 2019, 18(12): 2368-2380.
|
7. |
Prahallad A, Weiss A, Voshol H, et al. CRISPR screening identifies mechanisms of resistance to KRASG12C and SHP2 inhibitor combinations in non-small cell lung cancer. Cancer Res, 2023, 83(24): 4130-4141.
|
8. |
Fedele C, Li S, Teng KW, et al. SHP2 inhibition diminishes KRASG12C cycling and promotes tumor microenvironment remodeling. J Exp Med, 2021, 218(1): e20201414.
|
9. |
Christofides A, Katopodi XL, Cao C, et al. SHP-2 and PD-1-SHP-2 signaling regulate myeloid cell differentiation and antitumor responses. Nat Immunol, 2023, 24(1): 55-68.
|
10. |
Christofides A, Strauss L, Yeo A, et al. The complex role of tumor-infiltrating macrophages. Nat Immunol, 2022, 23(8): 1148-1156.
|
11. |
Tang KH, Li S, Khodadadi-Jamayran A, et al. Combined inhibition of SHP2 and CXCR1/2 promotes antitumor T-cell response in NSCLC. Cancer Discov, 2022, 12(1): 47-61.
|
12. |
Habanjar O, Bingula R, Decombat C, et al. Crosstalk of inflammatory cytokines within the breast tumor microenvironment. Int J Mol Sci, 2023, 24(4): 4002.
|
13. |
Martínez-Sabadell A, Arenas EJ, Arribas J. IFNγ signaling in natural and therapy-induced antitumor responses. Clin Cancer Res, 2022, 28(7): 1243-1249.
|
14. |
Sun Y, Wang Q, Jiang Y, et al. Lactobacillus intestinalis facilitates tumor-derived CCL5 to recruit dendritic cell and suppress colorectal tumorigenesis. Gut Microbes, 2025, 17(1): 2449111.
|
15. |
Li L, Hao S, Gao M, et al. HDAC3 inhibition promotes antitumor immunity by enhancing CXCL10-mediated chemotaxis and recruiting of immune cells. Cancer Immunol Res, 2023, 11(5): 657-673.
|
16. |
Shiri AM, Zhang T, Bedke T, et al. IL-10 dampens antitumor immunity and promotes liver metastasis via PD-L1 induction. J Hepatol, 2024, 80(4): 634-644.
|
17. |
Perez-Penco M, Byrdal M, Lara de la Torre L, et al. The antitumor activity of TGFβ-specific T cells is dependent on IL-6 signaling. Cell Mol Immunol, 2025, 22(1): 111-126.
|
18. |
Wang S, Liu G, Li Y, et al. Metabolic reprogramming induces macrophage polarization in the tumor microenvironment. Front Immunol, 2022, 13: 840029.
|
19. |
Shao Y, Lan Y, Chai X, et al. CXCL8 induces M2 macrophage polarization and inhibits CD8+ T cell infiltration to generate an immunosuppressive microenvironment in colorectal cancer. FASEB J, 2023, 37(10): e23173.
|
20. |
Xiong X, Liao X, Qiu S, et al. CXCL8 in tumor biology and its implications for clinical translation. Front Mol Biosci, 2022, 9: 723846.
|
21. |
Han X, Wei J, Zheng R, et al. Macrophage SHP2 deficiency alleviates diabetic nephropathy via suppression of MAPK/NF-κB-dependent inflammation. Diabetes, 2024, 73(5): 780-796.
|
22. |
Sheng Y, Lin Y, Qiang Z, et al. Protein kinase A suppresses antiproliferative effect of interferon-α in hepatocellular carcinoma by activation of protein tyrosine phosphatase SHP2. J Biol Chem, 2025, 301(2): 108195.
|