1. |
Kulkarni HS, Cherikh WS, Chambers DC, et al. Bronchiolitis obliterans syndrome-free survival after lung transplantation: an International Society for Heart and Lung Transplantation Thoracic Transplant Registry analysis. J Heart Lung Transplant, 2019, 38(1): 5-16.
|
2. |
Kohmoto J, Nakao A, Kaizu T, et al. Low-dose carbon monoxide inhalation prevents ischemia/reperfusion injury of transplanted rat lung grafts. Surgery, 2006, 140(2): 179-185.
|
3. |
Ladak SS, Ward C, Ali S. The potential role of microRNAs in lung allograft rejection. J Heart Lung Transplant, 2016, 35(5): 550-559.
|
4. |
Nayak DK, Zhou F, Xu M, et al. Zbtb7a induction in alveolar macrophages is implicated in anti-HLA-mediated lung allograft rejection. Sci Transl Med, 2017, 9(398): eaal1243.
|
5. |
Yamada Y, Jang JH, De Meester I, et al. CD26 costimulatory blockade improves lung allograft rejection and is associated with enhanced interleukin-10 expression. J Heart Lung Transplant, 2016, 35(4): 508-517.
|
6. |
Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol, 2008, 8(12): 958-969.
|
7. |
Liu J, Zhou X, Zhan Z, et al. IL-25 regulates the polarization of macrophages and attenuates obliterative bronchiolitis in murine trachea transplantation models. Int Immunopharmacol, 2015, 25(2): 383-392.
|
8. |
Meng Q, Liu J, Lin F, et al. IL-17 contributes to the pathogenesis of obliterative bronchiolitis via regulation of M1 macrophages polarization in murine heterotopic trachea transplantation models. Int Immunopharmacol, 2017, 52: 51-60.
|
9. |
Strowig T, Henao-Mejia J, Elinav E, et al. Inflammasomes in health and disease. Nature, 2012, 481(7381): 278-286.
|
10. |
He X, Qian Y, Li Z, et al. TLR4-upregulated IL-1β and IL-1RI promote alveolar macrophage pyroptosis and lung inflammation through an autocrine mechanism. Sci Rep, 2016, 6: 31663.
|
11. |
Gao J, Peng S, Shan X, et al. Inhibition of AIM2 inflammasome-mediated pyroptosis by Andrographolide contributes to amelioration of radiation-induced lung inflammation and fibrosis. Cell Death Dis, 2019, 10(12): 957.
|
12. |
Guo Z, Zhou X, Li J, et al. Mesenchymal stem cells reprogram host macrophages to attenuate obliterative bronchiolitis in murine orthotopic tracheal transplantation. Int Immunopharmacol, 2013, 15(4): 726-734.
|
13. |
Chan E, Liu XX, Guo DJ, et al. Extract of Scutellaria baicalensis Georgi root exerts protection against myocardial ischemia-reperfusion injury in rats. Am J Chin Med, 2011, 39(4): 693-704.
|
14. |
Willis GR, Fernandez-Gonzalez A, Anastas J, et al. Mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation. Am J Respir Crit Care Med, 2018, 197(1): 104-116.
|
15. |
Lee C, Mitsialis SA, Aslam M, et al. Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation, 2012, 126(22): 2601-2611.
|
16. |
Kourembanas S. Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy. Annu Rev Physiol, 2015, 77: 13-27.
|
17. |
Burrello J, Monticone S, Gai C, et al. Stem cell-derived extracellular vesicles and immune-modulation. Front Cell Dev Biol, 2016, 4: 83.
|
18. |
Akbari A, Rezaie J. Potential therapeutic application of mesenchymal stem cell-derived exosomes in SARS-CoV-2 pneumonia. Stem Cell Res Ther, 2020, 11(1): 356.
|
19. |
Wang W, Liu Z, Su J, et al. Macrophage micro-RNA-155 promotes lipopolysaccharide-induced acute lung injury in mice and rats. Am J Physiol Lung Cell Mol Physiol, 2016, 311(2): L494-L506.
|
20. |
Ferguson SW, Wang J, Lee CJ, et al. The microRNA regulatory landscape of MSC-derived exosomes: a systems view. Sci Rep, 2018, 8(1): 1419.
|
21. |
Parker MW, Rossi D, Peterson M, et al. Fibrotic extracellular matrix activates a profibrotic positive feedback loop. J Clin Invest, 2014, 124(4): 1622-1635.
|
22. |
Montgomery RL, Yu G, Latimer PA, et al. MicroRNA mimicry blocks pulmonary fibrosis. EMBO Mol Med, 2014, 6(10): 1347-1356.
|
23. |
Kim KK, Sisson TH, Horowitz JC. Fibroblast growth factors and pulmonary fibrosis: it's more complex than it sounds. J Pathol, 2017, 241(1): 6-9.
|
24. |
Vittal R, Fan L, Greenspan DS, et al. IL-17 induces type V collagen overexpression and EMT via TGF-β-dependent pathways in obliterative bronchiolitis. Am J Physiol Lung Cell Mol Physiol, 2013, 304(6): L401-L414.
|
25. |
Xu Z, Chen Y, Ma L, et al. Role of exosomal non-coding RNAs from tumor cells and tumor-associated macrophages in the tumor microenvironment. Mol Ther, 2022, 30(10): 3133-3154.
|
26. |
Hua T, Yang M, Song H, et al. Huc-MSCs-derived exosomes attenuate inflammatory pain by regulating microglia pyroptosis and autophagy via the miR-146a-5p/TRAF6 axis. J Nanobiotechnology, 2022, 20(1): 324.
|
27. |
Brugiere O, Verleden SE. Putting the spotlight on macrophage-derived cathepsin in the pathophysiology of obliterative bronchiolitis. Eur Respir J, 2021, 57(5): 2004607.
|
28. |
Cheng P, Li S, Chen H. Macrophages in lung injury, repair, and fibrosis. Cells, 2021, 10(2): 436.
|
29. |
Gao F, Xiong D, Sun Z, et al. ARC@DPBNPs suppress LPS-induced acute lung injury via inhibiting macrophage pyroptosis and M1 polarization by ERK pathway in mice. Int Immunopharmacol, 2024, 131: 111794.
|
30. |
Li B, Zou Z, Meng F, et al. Dust mite-derived Der f 3 activates a pro-inflammatory program in airway epithelial cells via PAR-1 and PAR-2. Mol Immunol, 2019, 109: 1-11.
|
31. |
Liu Q, Lv C, Jiang Y, et al. From hair to liver: emerging application of hair follicle mesenchymal stem cell transplantation reverses liver cirrhosis by blocking the TGF-β/Smad signaling pathway to inhibit pathological HSC activation. PeerJ, 2022, 10: e12872.
|