1. |
黄理宾, 黄秋实, 杨烈. 全球及中国的结直肠癌流行病学特征及防治: 2022《全球癌症统计报告》解读. 中国普外基础与临床杂志, 2024, 31(5): 530-537.
|
2. |
姚一菲, 孙可欣, 郑荣寿. 《2022全球癌症统计报告》解读: 中国与全球对比. 中国普外基础与临床杂志, 2024, 31(7): 769-780.
|
3. |
Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2024, 74(3): 229-263.
|
4. |
Eng C, Yoshino T, Ruíz-García E, et al. Colorectal cancer. Lancet, 2024, 404(10449): 294-310.
|
5. |
Singh M, Morris VK, Bandey IN, et al. Advancements in combining targeted therapy and immunotherapy for colorectal cancer. Trends Cancer, 2024, 10(7): 598-609.
|
6. |
Yang YN, Wang LS, Dang YQ, et al. Evaluating the efficacy of immunotherapy in gastric cancer: Insights from immune checkpoint inhibitors. World J Gastroenterol, 2024, 30(32): 3726-3729.
|
7. |
Tsukita Y, Tozuka T, Kushiro K, et al. Immunotherapy or chemoimmunotherapy in older adults with advanced non-small cell lung cancer. JAMA Oncol, 2024, 10(4): 439-447.
|
8. |
Sorscher S. Pembrolizumab in non-small-cell lung cancer. N Engl J Med, 2017, 376(10): 996-997.
|
9. |
Chau I. Pembrolizumab as a first-line treatment for advanced gastric cancer. Lancet Oncol, 2023, 24(11): 1158-1159.
|
10. |
Liu Y, Wong CC, Ding Y, et al. Peptostreptococcus anaerobius mediates anti-PD1 therapy resistance and exacerbates colorectal cancer via myeloid-derived suppressor cells in mice. Nat Microbiol, 2024, 9(6): 1467-1482.
|
11. |
Guo Y, Xie F, Liu X, et al. Blockade of TNF-α/TNFR2 signalling suppresses colorectal cancer and enhances the efficacy of anti-PD1 immunotherapy by decreasing CCR8+ T regulatory cells. J Mol Cell Biol, 2024, 16(6): mjad067. doi: 10.1093/jmcb/mjad067.
|
12. |
Al Tameemi W, Dale TP, Al-Jumaily RMK, et al. Hypoxia-modified cancer cell metabolism. Front Cell Dev Biol, 2019, 7: 4. doi: 10.3389/fcell.2019.00004.
|
13. |
Kopecka J, Salaroglio IC, Perez-Ruiz E, et al. Hypoxia as a driver of resistance to immunotherapy. Drug Resist Updat, 2021, 59: 100787. doi: 10.1016/j.drup.2021.100787.
|
14. |
Murphy CC, Zaki TA. Changing epidemiology of colorectal cancer—birth cohort effects and emerging risk factors. Nat Rev Gastroenterol Hepatol, 2024, 21(1): 25-34.
|
15. |
Qi J, Li M, Wang L, et al. National and subnational trends in cancer burden in China, 2005-20: an analysis of national mortality surveillance data. Lancet Public Health, 2023, 8(12): e943-e955. doi: 10.1016/S2468-2667(23)00211-6.
|
16. |
Taieb J, Svrcek M, Cohen R, et al. Deficient mismatch repair/microsatellite unstable colorectal cancer: Diagnosis, prognosis and treatment. Eur J Cancer, 2022, 175: 136-157.
|
17. |
Bando H, Ohtsu A, Yoshino T. Therapeutic landscape and future direction of metastatic colorectal cancer. Nat Rev Gastroenterol Hepatol, 2023, 20(5): 306-322.
|
18. |
Tohme S, Yazdani HO, Liu Y, et al. Hypoxia mediates mitochondrial biogenesis in hepatocellular carcinoma to promote tumor growth through HMGB1 and TLR9 interaction. Hepatology, 2017, 66(1): 182-197.
|
19. |
Ju S, Wang F, Wang Y, et al. CSN8 is a key regulator in hypoxia-induced epithelial-mesenchymal transition and dormancy of colorectal cancer cells. Mol Cancer, 2020, 19(1): 168. doi: 10.1186/s12943-020-01285-4.
|
20. |
Malier M, Gharzeddine K, Laverriere MH, et al. Hypoxia drives dihydropyrimidine dehydrogenase expression in macrophages and confers chemoresistance in colorectal cancer. Cancer Res, 2021, 81(23): 5963-5976.
|
21. |
Zhang J, Hu S, Jin X, et al. Hypoxia-associated GPNMB+ macrophages promote malignant progression of colorectal cancer and its related risk signature are powerful predictive tool for the treatment of colorectal cancer patients. Environ Toxicol, 2025, 40(2): 204-221.
|
22. |
Nikonova AS, Astsaturov I, Serebriiskii IG, et al. Aurora A kinase (AURKA) in normal and pathological cell division. Cell Mol Life Sci, 2013, 70(4): 661-687.
|
23. |
Wang SH, Yeh CH, Wu CW, et al. PFDN4 as a prognostic marker was associated with chemotherapy resistance through CREBP1/AURKA pathway in triple-negative breast cancer. Int J Mol Sci, 2024, 25(7): 3906. doi: 10.3390/ijms25073906.
|
24. |
Yang N, Wang C, Wang J, et al. Aurora kinase A stabilizes FOXM1 to enhance paclitaxel resistance in triple-negative breast cancer. J Cell Mol Med, 2019, 23(9): 6442-6453.
|
25. |
Qin Y, Zhang S, Deng S, et al. Epigenetic silencing of miR-137 induces drug resistance and chromosomal instability by targeting AURKA in multiple myeloma. Leukemia, 2017, 31(5): 1123-1135.
|
26. |
Cheng X, Wang J, Lu S, et al. Aurora kinase A (AURKA) promotes the progression and imatinib resistance of advanced gastrointestinal stromal tumors. Cancer Cell Int, 2021, 21(1): 407. doi: 10.1186/s12935-021-02111-7.
|
27. |
Rio-Vilariño A, Cenigaonandia-Campillo A, García-Bautista A, et al. Inhibition of the AURKA/YAP1 axis is a promising therapeutic option for overcoming cetuximab resistance in colorectal cancer stem cells. Br J Cancer, 2024, 130(8): 1402-1413.
|
28. |
Polverino F, Mastrangelo A, Guarguaglini G. Contribution of AurkA/TPX2 overexpression to chromosomal imbalances and cancer. Cells, 2024, 13(16): 1397. doi: 10.3390/cells13161397.
|
29. |
Boos SL, Loevenich LP, Vosberg S, et al. Disease modeling on tumor organoids implicates AURKA as a therapeutic target in liver metastatic colorectal cancer. Cell Mol Gastroenterol Hepatol, 2022, 13(2): 517-540.
|
30. |
André T, Shiu KK, Kim TW, et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N Engl J Med, 2020, 383(23): 2207-2218.
|