1. |
姚一菲, 孙可欣, 郑荣寿. 《2022全球癌症统计报告》解读: 中国与全球对比. 中国普外基础与临床杂志, 2024, 31(7): 769-780.
|
2. |
Halbrook CJ, Lyssiotis CA, Pasca di Magliano M, et al. Pancreatic cancer: Advances and challenges. Cell, 2023, 186(8): 1729-1754.
|
3. |
Ariston Gabriel AN, Wang F, Jiao Q, et al. The involvement of exosomes in the diagnosis and treatment of pancreatic cancer. Mol Cancer, 2020, 19(1): 132. doi: 10.1186/s12943-020-01245-y.
|
4. |
Yang J, Xu R, Wang C, et al. Early screening and diagnosis strategies of pancreatic cancer: a comprehensive review. Cancer Commun (Lond), 2021, 41(12): 1257-1274.
|
5. |
Zhao Y, Tang J, Jiang K, et al. Liquid biopsy in pancreatic cancer—Current perspective and future outlook. Biochim Biophys Acta Rev Cancer, 2023, 1878(3): 188868. doi: 10.1016/j.bbcan.2023.188868.
|
6. |
Mizrahi JD, Surana R, Valle JW, et al. Pancreatic cancer. Lancet, 2020, 395(10242): 2008-2020.
|
7. |
Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol, 2014, 30: 255-289.
|
8. |
Li XX, Yang LX, Wang C, et al. The roles of exosomal proteins: classification, function, and applications. Int J Mol Sci, 2023, 24(4): 3061. doi: 10.3390/ijms24043061.
|
9. |
Hu C, Jiang W, Lv M, et al. Potentiality of exosomal proteins as novel cancer biomarkers for liquid biopsy. Front Immunol, 2022, 13: 792046. doi: 10.3389/fimmu.2022.792046.
|
10. |
Gao P, Li X, Du X, et al. Diagnostic and therapeutic potential of exosomes in neurodegenerative diseases. Front Aging Neurosci, 2021, 13: 790863. doi: 10.3389/fnagi.2021.790863.
|
11. |
Ghosh S, Rajendran RL, Mahajan AA, et al. Harnessing exosomes as cancer biomarkers in clinical oncology. Cancer Cell Int, 2024, 24(1): 278. doi: 10.1186/s12935-024-03464-5.
|
12. |
Zhang Y, Bi J, Huang J, et al. Exosome: A review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. Int J Nanomedicine, 2020, 15: 6917-6934.
|
13. |
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science, 2020, 367(6478): eaau6977. doi: 10.1126/science.aau6977.
|
14. |
Zhang Y, Liu Y, Liu H, et al. Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci, 2019, 9: 19. doi: 10.1186/s13578-019-0282-2.
|
15. |
Dai J, Su Y, Zhong S, et al. Exosomes: Key players in cancer and potential therapeutic strategy. Signal Transduct Target Ther, 2020, 5(1): 145. doi: 10.1038/s41392-020-00261-0.
|
16. |
Pegtel DM, Gould SJ. Exosomes. Annu Rev Biochem, 2019, 88: 487-514.
|
17. |
Du S, Guan Y, Xie A, et al. Extracellular vesicles: a rising star for therapeutics and drug delivery. J Nanobiotechnology, 2023, 21(1): 231. doi: 10.1186/s12951-023-01973-5.
|
18. |
Fang X, Lan H, Jin K, et al. Pancreatic cancer and exosomes: role in progression, diagnosis, monitoring, and treatment. Front Oncol, 2023, 13: 1149551. doi: 10.3389/fonc.2023.1149551.
|
19. |
Kok VC, Yu CC. Cancer-derived exosomes: Their role in cancer biology and biomarker development. Int J Nanomedicine, 2020, 15: 8019-8036.
|
20. |
Casari I, Howard JA, Robless EE, et al. Exosomal integrins and their influence on pancreatic cancer progression and metastasis. Cancer Lett, 2021, 507: 124-134.
|
21. |
Xu R, Rai A, Chen M, et al. Extracellular vesicles in cancer—implications for future improvements in cancer care. Nat Rev Clin Oncol, 2018, 15(10): 617-638.
|
22. |
Xu J, Quan G, Huang W, et al. VSIG2 promotes malignant progression of pancreatic ductal adenocarcinoma by enhancing LAMTOR2-mediated mTOR activation. Cell Commun Signal, 2023, 21(1): 223. doi: 10.1186/s12964-023-01209-x.
|
23. |
Jin H, Liu P, Wu Y, et al. Exosomal zinc transporter ZIP4 promotes cancer growth and is a novel diagnostic biomarker for pancreatic cancer. Cancer Sci, 2018, 109(9): 2946-2956.
|
24. |
Yan Q, Yuan WB, Sun X, et al. Asparaginyl endopeptidase enhances pancreatic ductal adenocarcinoma cell invasion in an exosome-dependent manner and correlates with poor prognosis. Int J Oncol, 2018, 52(5): 1651-1660.
|
25. |
Guo Y, Chen T, Liang X, et al. Tumor cell derived exosomal GOT1 suppresses tumor cell ferroptosis to accelerate pancreatic cancer progression by activating Nrf2/HO-1 axis via upregulating CCR2 expression. Cells, 2022, 11(23): 3893. doi: 10.3390/cells11233893.
|
26. |
Yue S, Mu W, Erb U, et al. The tetraspanins CD151 and Tspan8 are essential exosome components for the crosstalk between cancer initiating cells and their surrounding. Oncotarget, 2015, 6(4): 2366-2384.
|
27. |
Chen Y, Kleeff J, Sunami Y. Pancreatic cancer cell- and cancer-associated fibroblast-derived exosomes in disease progression, metastasis, and therapy. Discov Oncol, 2024, 15(1): 253. doi: 10.1007/s12672-024-01111-z.
|
28. |
He Z, Li X, Chen S, et al. CD105+CAF-derived exosomes CircAMPK1 promotes pancreatic cancer progression by activating autophagy. Exp Hematol Oncol, 2024, 13(1): 79. doi: 10.1186/s40164-024-00533-3.
|
29. |
Castillo J, Bernard V, San Lucas FA, et al. Surfaceome profiling enables isolation of cancer-specific exosomal cargo in liquid biopsies from pancreatic cancer patients. Ann Oncol, 2018, 29(1): 223-229.
|
30. |
Hoshino A, Costa-Silva B, Shen TL, et al. Tumour exosome integrins determine organotropic metastasis. Nature, 2015, 527(7578): 329-335.
|
31. |
Zhang H, Xing J, Dai Z, et al. Exosomes: The key of sophisticated cell-cell communication and targeted metastasis in pancreatic cancer. Cell Commun Signal, 2022, 20(1): 9. doi: 10.1186/s12964-021-00808-w.
|
32. |
Xie Z, Gao Y, Ho C, et al. Exosome-delivered CD44v6/C1QBP complex drives pancreatic cancer liver metastasis by promoting fibrotic liver microenvironment. Gut, 2022, 71(3): 568-579.
|
33. |
Ogawa K, Lin Q, Li L, et al. Prometastatic secretome trafficking via exosomes initiates pancreatic cancer pulmonary metastasis. Cancer Lett, 2020, 481: 63-75.
|
34. |
Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest, 2009, 119(6): 1420-1428.
|
35. |
Kahlert C, Kalluri R. Exosomes in tumor microenvironment influence cancer progression and metastasis. J Mol Med (Berl), 2013, 91(4): 431-437.
|
36. |
Nakayama F, Miyoshi M, Kimoto A, et al. Pancreatic cancer cell-derived exosomes induce epithelial-mesenchymal transition in human pancreatic cancer cells themselves partially via transforming growth factor β1. Med Mol Morphol, 2022, 55(3): 227-235.
|
37. |
Kruk L, Braun A, Cosset E, et al. Galectin functions in cancer-associated inflammation and thrombosis. Front Cardiovasc Med, 2023, 10: 1052959. doi: 10.3389/fcvm.2023.1052959.
|
38. |
Toti A, Santi A, Pardella E, et al. Activated fibroblasts enhance cancer cell migration by microvesicles-mediated transfer of Galectin-1. J Cell Commun Signal, 2021, 15(3): 405-419.
|
39. |
Wei Q, Wei L, Zhang J, et al. EphA2-enriched exosomes promote cell migration and are a potential diagnostic serum marker in pancreatic cancer. Mol Med Rep, 2020, 22(4): 2941-2947.
|
40. |
Zhang YF, Zhou YZ, Zhang B, et al. Pancreatic cancer-derived exosomes promoted pancreatic stellate cells recruitment by pancreatic cancer. J Cancer, 2019, 10(18): 4397-4407.
|
41. |
Qin C, Li T, Lin C, et al. The systematic role of pancreatic cancer exosomes: distant communication, liquid biopsy and future therapy. Cancer Cell Int, 2024, 24(1): 264. doi: 10.1186/s12935-024-03456-5.
|
42. |
Luo Y, Li Z, Kong Y, et al. KRAS mutant-driven SUMOylation controls extracellular vesicle transmission to trigger lymphangiogenesis in pancreatic cancer. J Clin Invest, 2022, 132(14): e157644. doi: 10.1172/JCI157644.
|
43. |
Linton SS, Abraham T, Liao J, et al. Tumor-promoting effects of pancreatic cancer cell exosomes on THP-1-derived macrophages. PLoS One, 2018, 13(11): e0206759. doi: 10.1371/journal.pone.0206759.
|
44. |
Chang YT, Peng HY, Hu CM, et al. Pancreatic cancer-derived small extracellular vesical Ezrin regulates macrophage polarization and promotes metastasis. Am J Cancer Res, 2020, 10(1): 12-37.
|
45. |
Vahabi M, Comandatore A, Centra C, et al. Thinking small to win big? A critical review on the potential application of extracellular vesicles for biomarker discovery and new therapeutic approaches in pancreatic cancer. Semin Cancer Biol, 2023, 97: 50-67.
|
46. |
O’Neill RS, Stoita A. Biomarkers in the diagnosis of pancreatic cancer: Are we closer to finding the golden ticket?. World J Gastroenterol, 2021, 27(26): 4045-4087.
|
47. |
Melo SA, Luecke LB, Kahlert C, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature, 2015, 523(7559): 177-182.
|
48. |
Nicoletti A, Negri M, Paratore M, et al. Diagnostic and prognostic role of extracellular vesicles in pancreatic cancer: Current evidence and future perspectives. Int J Mol Sci, 2023, 24(1): 885. doi: 10.3390/ijms24010885.
|
49. |
Li H, Chiang CL, Kwak KJ, et al. Extracellular vesicular analysis of glypican 1 mRNA and protein for pancreatic cancer diagnosis and prognosis. Adv Sci (Weinh), 2024, 11(11): e2306373. doi: 10.1002/advs.202306373.
|
50. |
Moutinho-Ribeiro P, Batista IA, Quintas ST, et al. Exosomal glypican-1 is elevated in pancreatic cancer precursors and can signal genetic predisposition in the absence of endoscopic ultrasound abnormalities. World J Gastroenterol, 2022, 28(31): 4310-4327.
|
51. |
Liu P, Zu F, Chen H, et al. Exosomal DNAJB11 promotes the development of pancreatic cancer by modulating the EGFR/MAPK pathway. Cell Mol Biol Lett, 2022, 27(1): 87. doi: 10.1186/s11658-022-00390-0.
|
52. |
Byeon S, McKay MJ, Molloy MP, et al. Novel serum protein biomarker panel for early diagnosis of pancreatic cancer. Int J Cancer, 2024, 155(2): 365-371.
|
53. |
Yang J, Zhang Y, Gao X, et al. Plasma-derived exosomal ALIX as a novel biomarker for diagnosis and classification of pancreatic cancer. Front Oncol, 2021, 11: 628346. doi: 10.3389/fonc.2021.628346.
|
54. |
He J, Long J, Zhai C, et al. Codetection of proteins and RNAs on extracellular vesicles for pancreatic cancer early diagnosis. Anal Chem, 2024, 96(17): 6618-6627.
|
55. |
Hu ZI, O’Reilly EM. Therapeutic developments in pancreatic cancer. Nat Rev Gastroenterol Hepatol, 2024, 21(1): 7-24.
|
56. |
Bauer MR, Bright EE, MacDonald JJ, et al. Quality of life in patients with pancreatic cancer and their caregivers: a systematic review. Pancreas, 2018, 47(4): 368-375.
|
57. |
El-Tanani M, Nsairat H, Matalka II, et al. Impact of exosome therapy on pancreatic cancer and its progression. Med Oncol, 2023, 40(8): 225. doi: 10.1007/s12032-023-02101-x.
|
58. |
Kamerkar S, LeBleu VS, Sugimoto H, et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature, 2017, 546(7659): 498-503.
|
59. |
Luo J. KRAS mutation in pancreatic cancer. Semin Oncol, 2021, 48(1): 10-18.
|
60. |
Choi H, Choi Y, Yim HY, et al. Biodistribution of exosomes and engineering strategies for targeted delivery of therapeutic exosomes. Tissue Eng Regen Med, 2021, 18(4): 499-511.
|
61. |
Creeden JF, Sevier J, Zhang JT, et al. Smart exosomes enhance PDAC targeted therapy. J Control Release, 2024, 368: 413-429.
|
62. |
Whiteside TL. Tumor-derived exosomes and their role in cancer progression. Adv Clin Chem, 2016, 74: 103-141.
|
63. |
Qiu H, Liang J, Yang G, et al. Application of exosomes in tumor immunity: recent progresses. Front Cell Dev Biol, 2024, 12: 1372847. doi: 10.3389/fcell.2024.1372847.
|
64. |
Que RS, Lin C, Ding GP, et al. Increasing the immune activity of exosomes: the effect of miRNA-depleted exosome proteins on activating dendritic cell/cytokine-induced killer cells against pancreatic cancer. J Zhejiang Univ Sci B, 2016, 17(5): 352-360.
|
65. |
Guo M, Sun C, LiuR, et al. A drug delivery platform using engineered MUC1‐targeting exosomes enhances chemosensitivity and immunogenic cell death in pancreatic ductal adenocarcinoma. SmartMat, 2024, 5(5): e1279. doi: 10.1002/SMM2.1279.
|
66. |
Chen L, Wang L, Zhu L, et al. Exosomes as drug carriers in anti-cancer therapy. Front Cell Dev Biol, 2022, 10: 728616. doi: 10.3389/fcell.2022.728616.
|
67. |
Al Faruque H, Choi ES, Kim JH, et al. Enhanced effect of autologous EVs delivering paclitaxel in pancreatic cancer. J Control Release, 2022, 347: 330-346.
|
68. |
Chiang CL, Ma Y, Hou YC, et al. Dual targeted extracellular vesicles regulate oncogenic genes in advanced pancreatic cancer. Nat Commun, 2023, 14(1): 6692. doi: 10.1038/s41467-023-42402-3.
|