- 1. Department of Thyroid and Breast Surgery, Bayannur Hospital, Bayannur, Inner Mongolia 015000, P. R. China;
- 2. Central Laboratory, Bayannur Hospital, Bayannur, Inner Mongolia 015000, P. R. China;
- 3. Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, P. R. China;
Copyright © the editorial department of CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY of West China Medical Publisher. All rights reserved
1. | 邬昊, 吕青. 全球及中国乳腺癌的流行病学趋势及防控启示: 2018–2022年《全球癌症统计报告》解读. 中国普外基础与临床杂志, 2024, 31(7): 796-802. |
2. | Maqsood Q, Khan MU, Fatima T, et al. Recent insights into breast cancer: molecular pathways, epigenetic regulation, and emerging targeted therapies. Breast Cancer (Auckl), 2025, 19: 11782234251355663. doi: 10.1177/11782234251355663. |
3. | 张一鸣, 田辛晨, 王宇飞, 等. 基于分子分型的乳腺癌中医精准辨治思路探讨. 北京中医药大学学报, 2023, 46(7): 1025-1031. |
4. | 杨晓静, 徐溢, 沈赞. 抗HER2靶向治疗的耐药机制及治疗新策略. 肿瘤, 2023, 43(7): 580-597. |
5. | Khan MM, Yalamarty SSK, Rajmalani BA, et al. Recent strategies to overcome breast cancer resistance. Crit Rev Oncol Hematol, 2024, 197: 104351. doi: 10.1016/j.critrevonc.2024.104351. |
6. | Ryspayeva D, Seyhan AA, MacDonald WJ, et al. Signaling pathway dysregulation in breast cancer. Oncotarget, 2025, 16: 168-201. |
7. | Singla H, Ludhiadch A, Kaur RP, et al. Recent advances in HER2 positive breast cancer epigenetics: susceptibility and therapeutic strategies. Eur J Med Chem, 2017, 142: 316-327. |
8. | 吴悠, 戴建国. HER2阳性乳腺癌靶向治疗的研究进展. 中国临床新医学, 2024, 17(10): 1183-1186. |
9. | Vega Cano KS, Marmolejo Castañeda DH, et al. Systemic therapy for HER2-positive metastatic breast cancer: current and future trends. Cancers (Basel), 2022, 15(1): 51. doi: 10.3390/cancers15010051. |
10. | Baselga J, Cortés J, Kim SB, et al. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med, 2012, 366(2): 109-119. |
11. | 艾林, 张清媛. T-DM1治疗晚期HER2阳性乳腺癌耐药机制的研究进展. 现代肿瘤医学, 2025, 1-7.5-08-05. |
12. | Ma F, Yan M, Li W, et al. Pyrotinib versus placebo in combination with trastuzumab and docetaxel as first line treatment in patients with HER2 positive metastatic breast cancer (PHILA): Randomised, double blind, multicentre, phase 3 trial. BMJ, 2023, 383: e076065. doi: 10.1136/bmj-2023-076065. |
13. | Cheng X, Sun Y, Highkin M, et al. Breast cancer mutations HER2V777L and PIK3CAH1047R activate the p21-CDK4/6-cyclin D1 axis to drive tumorigenesis and drug resistance. Cancer Res, 2023, 83(17): 2839-2857. |
14. | Martin M, Holmes FA, Ejlertsen B, et al. Neratinib after trastuzumab-based adjuvant therapy in HER2-positive breast cancer (ExteNET): 5-year analysis of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol, 2017, 18(12): 1688-1700. |
15. | 曹萌, 刘相麟, 刘喆赢, 等. 汉曲优®与帕妥珠单抗联合化疗新辅助治疗HER-2阳性乳腺癌疗效和安全评价. 中国临床研究, 2022, 35(3): 319-324. |
16. | Copeland-Halperin RS, Liu JE, Yu AF. Cardiotoxicity of HER2-targeted therapies. Curr Opin Cardiol, 2019, 34(4): 451-458. |
17. | Chai M, Li L, Wu H, et al. Lung toxicity induced by anti-HER2 antibody-drug conjugates for breast cancer. Crit Rev Oncol Hematol, 2024, 195: 104274. doi: 10.1016/j.critrevonc.2024.104274. |
18. | De Sanctis R, Jacobs F, Benvenuti C, et al. From seaside to bedside: current evidence and future perspectives in the treatment of breast cancer using marine compounds. Front Pharmacol, 2022, 13: 909566. doi: 10.3389/fphar.2022.909566. |
19. | 谢宁, 刘斌亮, 欧阳取长. 晚期HR阳性/HER2阳性乳腺癌的治疗进展. 肿瘤药学, 2022, 12(6): 703-708. |
20. | 张智滔, 赵帅. 托瑞米芬联合他莫昔芬辅助治疗晚期乳腺癌的效果及对患者生存质量的影响. 临床合理用药杂志, 2022, 15(28): 96-98. |
21. | Olayoku FR, Verhoog NJD, Louw A. Cyclopia extracts act as selective estrogen receptor subtype downregulators in estrogen receptor positive breast cancer cell lines: Comparison to standard of care breast cancer endocrine therapies and a selective estrogen receptor agonist and antagonist. Front Pharmacol, 2023, 14: 1122031. doi: 10.3389/fphar.2023.1122031. |
22. | Robertson JF. Fulvestrant (Faslodex) —how to make a good drug better. Oncologist, 2007, 12(7): 774-784. |
23. | Martel S, Bruzzone M, Ceppi M, et al. Risk of adverse events with the addition of targeted agents to endocrine therapy in patients with hormone receptor-positive metastatic breast cancer: A systematic review and meta-analysis. Cancer Treat Rev, 2018, 62: 123-132. |
24. | 陈飞, 程祺, 隋殿晶. CDK4/6抑制剂在乳腺癌治疗中的耐药机制. 中国老年学杂志, 2023, 43(19): 4858-4860. |
25. | 王晓稼, 王薇. HR阳性/HER2阴性乳腺癌CDK4/6抑制剂联合内分泌治疗—《中国临床肿瘤学会(CSCO)乳腺癌诊疗指南(2022版)》解读. 浙江医学, 2022, 44(24): 2595-2599. |
26. | Morrison L, Loibl S, Turner NC. The CDK4/6 inhibitor revolution—a game-changing era for breast cancer treatment. Nat Rev Clin Oncol, 2024, 21(2): 89-105. |
27. | 李安娜, 夏铮铮, 蔡佳立, 等. CDK4/6抑制剂一线治疗HR+/HER2– 晚期乳腺癌的快速卫生技术评估. 药物流行病学杂志, 2024, 33(9): 1017-1029. |
28. | 王蕾, 杨思原, 张季, 等. CDK4/6抑制剂在HR+ 晚期乳腺癌治疗中的耐药机制及进展后治疗策略. 中南药学, 2024, 22(4): 1030-1036. |
29. | 冯聪, 张寅斌, 吴菲, 等. BRCA1/2突变和同源重组修复缺陷(HRD)检测在乳腺癌中的临床研究进展. 现代肿瘤医学, 2023, 31(10): 1940-1943. |
30. | Li Y, Miao W, Yuan C, et al. PARP inhibitor boost the efficacy of photothermal therapy to TNBC through enhanced DNA damage and inhibited homologous recombination repair. Drug Deliv Transl Res, 202, 15(3): 955-967. |
31. | Robson M, Im SA, Senkus E, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med, 2017, 377(6): 523-533. |
32. | McCrea C, Hettle R, Gulati P, et al. Indirect treatment comparison of olaparib and talazoparib in germline BRCA-mutated HER2-negative metastatic breast cancer. J Comp Eff Res, 2021, 10(13): 1021-1030. |
33. | Shuai Q, Bai X, Li G, et al. Hematopoietic adverse events associated with PARP inhibitors: a FAERS database study. Expert Opin Drug Saf, 2024: 1-11. doi: 10.1080/14740338.2024.2443781. |
34. | Rejili M. Synergistic strategies: ADC-PARP inhibitor combinations in triple-negative breast cancer therapy. Pathol Res Pract, 2025, 272: 156075. doi: 10.1016/j.prp.2025.156075. |
35. | Miller TW, Rexer BN, Garrett JT, et al. Mutations in the phosphatidylinositol 3-kinase pathway: role in tumor progression and therapeutic implications in breast cancer. Breast Cancer Res, 2011, 13(6): 224. doi: 10.1186/bcr3039. |
36. | Verret B, Cortes J, Bachelot T, et al. Efficacy of PI3K inhibitors in advanced breast cancer. Ann Oncol, 2019, 30 Suppl 10: x12-x20.30-10. doi: 10.1093/annonc/mdz381. |
37. | Dong C, Wu J, Chen Y, et al. Activation of PI3K/AKT/mTOR pathway causes drug resistance in breast cancer. Front Pharmacol, 2021, 12: 628690. doi: 10.3389/fphar.2021.628690. |
38. | Hu Y, Guo R, Wei J, et al. Effects of PI3K inhibitor NVP-BKM120 on overcoming drug resistance and eliminating cancer stem cells in human breast cancer cells. Cell Death Dis, 2015, 6(12): e2020. doi: 10.1038/cddis.2015.363. |
39. | Alves CL, Ditzel HJ. Drugging the PI3K/AKT/mTOR pathway in ER+ breast cancer. Int J Mol Sci, 2023, 24(5): 4522. doi: 10.3390/ijms24054522. |
40. | Miricescu D, Totan A, Stanescu-Spinu II, et al. PI3K/AKT/mTOR signaling pathway in breast cancer: from molecular landscape to clinical aspects. Int J Mol Sci, 2020, 22(1): 173. doi: 10.3390/ijms22010173. |
41. | 黄昱. 乳腺癌免疫检查点抑制剂治疗进展. 中国肿瘤临床与康复, 2023, 30(6): 340-344. |
42. | Li H, Chang Y, Jin T, et al. Progress of PD-1/PD-L1 immune checkpoint inhibitors in the treatment of triple-negative breast cancer. Cancer Cell Int, 2025, 25(1): 139. doi: 10.1186/s12935-025-03769-z. |
43. | Simmons CE, Brezden-Masley C, McCarthy J, et al. Positive progress: current and evolving role of immune checkpoint inhibitors in metastatic triple-negative breast cancer. Ther Adv Med Oncol, 2020, 12: 1758835920909091. doi: 10.1177/1758835920909091. |
44. | Thomas R, Al-Khadairi G, Decock J. Immune checkpoint inhibitors in triple negative breast cancer treatment: promising future prospects. Front Oncol, 2021, 10: 600573. doi: 10.3389/fonc.2020.600573. |
45. | Mu Y, Meng Y, Du Y, et al. Clinical characteristics and treatment outcomes of HER2 mutation and HER2 fusion in 22 patients with advanced breast cancer. Thorac Cancer, 2023, 14(34): 3381-3388. |
46. | Araki K, Miyoshi Y. Mechanism of resistance to endocrine therapy in breast cancer: the important role of PI3K/Akt/mTOR in estrogen receptor-positive, HER2-negative breast cancer. Breast Cancer, 2018, 25(4): 392-401. |
47. | 孙亚蒙, 马晔, 郭润生. 乳腺癌组织样本中HER2基因拷贝数的检测分析. 上海交通大学学报(医学版), 2022, 42(11): 1589-1597. |
48. | Fan P, Jordan VC. New insights into acquired endocrine resistance of breast cancer. Cancer Drug Resist, 2019, 2(2): 198-209. |
49. | 赵佳宁, 刘月平. 乳腺癌PIK3CA突变的临床意义及其检测研究进展. 临床与实验病理学杂志, 2024, 40(9): 973-978. |
50. | Rocca A, Braga L, Volpe MC, et al. The predictive and prognostic role of RAS-RAF-MEK-ERK pathway alterations in breast cancer: revision of the literature and comparison with the analysis of cancer genomic datasets. Cancers (Basel), 2022, 14(21): 5306. doi: 10.3390/cancers14215306. |
51. | Javankiani S, Bolandi S, Soleimani A, et al. MAPK signaling mediates tamoxifen resistance in estrogen receptor-positive breast cancer. Mol Cell Biochem, 2025 May 23. doi: 10.1007/s11010-025-05304-0. |
52. | Soleimani Dodaran M, Borgoni S, Sofyalı E, et al. Candidate methylation sites associated with endocrine therapy resistance in ER+/HER2- breast cancer. BMC Cancer, 2020, 20(1): 676. doi: 10.1186/s12885-020-07100-z. |
53. | Zhang C, Xu B, Liu P. Addition of the p110α inhibitor BYL719 overcomes targeted therapy resistance in cells from Her2-positive-PTEN-loss breast cancer. Tumour Biol, 2016, 37(11): 14831-14839. |
54. | Najjary S, Mohammadzadeh R, Mokhtarzadeh A, et al. Role of miR-21 as an authentic oncogene in mediating drug resistance in breast cancer. Gene, 2020, 738: 144453. doi: 10.1016/j.gene.2020.144453. |
55. | Singh D, Assaraf YG, Gacche RN. Long non-coding RNA mediated drug resistance in breast cancer. Drug Resist Updat, 2022, 63: 100851. doi: 10.1016/j.drup.2022.100851. |
56. | Kang Y. Landscape of NcRNAs involved in drug resistance of breast cancer. Clin Transl Oncol, 2023, 25(7): 1869-1892. |
57. | Modi A, Roy D, Sharma S, et al. ABC transporters in breast cancer: Their roles in multidrug resistance and beyond. J Drug Target, 2022, 30(9): 927-947. |
58. | Dilmac S, Ozpolat B. Mechanisms of PARP-inhibitor-resistance in BRCA-mutated breast cancer and new therapeutic approaches. Cancers (Basel), 2023, 15(14): 3642. doi: 10.3390/cancers15143642. |
59. | Gote V, Nookala AR, Bolla PK, et al. Drug resistance in metastatic breast cancer: Tumor targeted nanomedicine to the rescue. Int J Mol Sci, 2021, 22(9): 4673. doi: 10.3390/ijms22094673. |
60. | Zhao F, Zhang H. Feasibility study of pyrrolitinib-based dual-target therapy for neoadjuvant treatment of HER2-positive breast cancer patients. Breast Cancer (Dove Med Press), 2024, 16: 845-853. |
61. | 王玉凤, 党会芬, 罗旭, 等. CDK4/6抑制剂联合内分泌、靶向一线治疗HR+/HER2+ 晚期乳腺癌疗效分析. 甘肃医药, 2024, 43(1): 87-90. |
62. | 吴万垠. 肿瘤靶向免疫治疗时代难点问题及中医药切入点. 中国中西医结合杂志, 2024, 44(8): 901-905. |
63. | Venetis K, Cursano G, Pescia C, et al. Liquid biopsy: cell-free DNA based analysis in breast cancer. J Liq Biopsy, 2023, 1: 100002. doi: 10.1016/j.jlb.2023.100002. |
64. | Zhang X, Ju S, Wang X, et al. Advances in liquid biopsy using circulating tumor cells and circulating cell-free tumor DNA for detection and monitoring of breast cancer. Clin Exp Med, 2019, 19(3): 271-279. |
65. | Mukhtarova G, Angin M, Caner A, et al. Effects of 5-azacytidine and N6-methyladenosine combination on apoptosis and stemness in human breast cancer stem cells. Mol Biol Rep, 2025, 52(1): 292. doi: 10.1007/s11033-025-10398-2. |
66. | Sargazi Z, Yazdani Y, Tahavvori A, et al. NFR2/ABC transporter axis in drug resistance of breast cancer cells. Mol Biol Rep, 2023, 50(6): 5407-5414. |
67. | Lin NU, Pegram M, Sahebjam S, et al. Pertuzumab plus high-dose trastuzumab in patients with progressive brain metastases and HER2-positive metastatic breast cancer: primary analysis of a phase Ⅱ study. J Clin Oncol, 2021, 39(24): 2667-2675. |
68. | Jerusalem G, Farah S, Courtois A, et al. Continuous versus intermittent extended adjuvant letrozole for breast cancer: final results of randomized phase Ⅲ SOLE (Study of Letrozole Extension) and SOLE Estrogen Substudy. Ann Oncol, 2021, 32(10): 1256-1266. |
69. | Wolf DM, Yau C, Wulfkuhle J, et al. Redefining breast cancer subtypes to guide treatment prioritization and maximize response: predictive biomarkers across 10 cancer therapies. Cancer Cell, 2022, 40(6): 609-623. |
70. | Hany D, Vafeiadou V, Picard D. CRISPR-Cas9 screen reveals a role of purine synthesis for estrogen receptor α activity and tamoxifen resistance of breast cancer cells. Sci Adv, 2023, 9(19): eadd3685. doi: 10.1126/sciadv.add3685. |
71. | Ahmed M, Daoud GH, Mohamed A, et al. New insights into the therapeutic applications of CRISPR/Cas9 genome editing in breast cancer. Genes (Basel), 2021, 12(5): 723. doi: 10.3390/genes12050723. |
72. | Wang Y, Minden A. Current molecular combination therapies used for the treatment of breast cancer. Int J Mol Sci, 2022, 23(19): 11046. doi: 10.3390/ijms231911046. |
73. | Pritchard KI, Chia SK, Simmons C, et al. Enhancing endocrine therapy combination strategies for the treatment of postmenopausal HR+/HER2- advanced breast cancer. Oncologist, 2017, 22(1): 12-24. |
74. | Bhattacharya S, Saleem SM, Singh A, et al. Empowering precision medicine: regenerative AI in breast cancer. Front Oncol, 2024, 14: 1465720. doi: 10.3389/fonc.2024.1465720. |
75. | Wang W, Zhang R, Wang X, et al. Suppression of KIF3A inhibits triple negative breast cancer growth and metastasis by repressing Rb-E2F signaling and epithelial-mesenchymal transition. Cancer Sci, 2020, 111(4): 1422-1434. |
76. | Zhang P, Li C, Li F, et al. Novel multi-omics analysis revealing metabolic heterogeneity of breast cancer cell and subsequent development of associated prognostic signature. Transl Oncol, 2025, 59: 102444. doi: 10.1016/j.tranon.2025.102444. |
77. | Wang Q, Yang N, Yan H, et al. Novel folate-phenylfuran P-gp inhibitor conjugates for overcoming multidrug resistance in MCF-7/ADR cell. ChemMedChem, 2025, 20(13): e202500216. doi: 10.1002/cmdc.202500216. |
- 1. 邬昊, 吕青. 全球及中国乳腺癌的流行病学趋势及防控启示: 2018–2022年《全球癌症统计报告》解读. 中国普外基础与临床杂志, 2024, 31(7): 796-802.
- 2. Maqsood Q, Khan MU, Fatima T, et al. Recent insights into breast cancer: molecular pathways, epigenetic regulation, and emerging targeted therapies. Breast Cancer (Auckl), 2025, 19: 11782234251355663. doi: 10.1177/11782234251355663.
- 3. 张一鸣, 田辛晨, 王宇飞, 等. 基于分子分型的乳腺癌中医精准辨治思路探讨. 北京中医药大学学报, 2023, 46(7): 1025-1031.
- 4. 杨晓静, 徐溢, 沈赞. 抗HER2靶向治疗的耐药机制及治疗新策略. 肿瘤, 2023, 43(7): 580-597.
- 5. Khan MM, Yalamarty SSK, Rajmalani BA, et al. Recent strategies to overcome breast cancer resistance. Crit Rev Oncol Hematol, 2024, 197: 104351. doi: 10.1016/j.critrevonc.2024.104351.
- 6. Ryspayeva D, Seyhan AA, MacDonald WJ, et al. Signaling pathway dysregulation in breast cancer. Oncotarget, 2025, 16: 168-201.
- 7. Singla H, Ludhiadch A, Kaur RP, et al. Recent advances in HER2 positive breast cancer epigenetics: susceptibility and therapeutic strategies. Eur J Med Chem, 2017, 142: 316-327.
- 8. 吴悠, 戴建国. HER2阳性乳腺癌靶向治疗的研究进展. 中国临床新医学, 2024, 17(10): 1183-1186.
- 9. Vega Cano KS, Marmolejo Castañeda DH, et al. Systemic therapy for HER2-positive metastatic breast cancer: current and future trends. Cancers (Basel), 2022, 15(1): 51. doi: 10.3390/cancers15010051.
- 10. Baselga J, Cortés J, Kim SB, et al. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med, 2012, 366(2): 109-119.
- 11. 艾林, 张清媛. T-DM1治疗晚期HER2阳性乳腺癌耐药机制的研究进展. 现代肿瘤医学, 2025, 1-7.5-08-05.
- 12. Ma F, Yan M, Li W, et al. Pyrotinib versus placebo in combination with trastuzumab and docetaxel as first line treatment in patients with HER2 positive metastatic breast cancer (PHILA): Randomised, double blind, multicentre, phase 3 trial. BMJ, 2023, 383: e076065. doi: 10.1136/bmj-2023-076065.
- 13. Cheng X, Sun Y, Highkin M, et al. Breast cancer mutations HER2V777L and PIK3CAH1047R activate the p21-CDK4/6-cyclin D1 axis to drive tumorigenesis and drug resistance. Cancer Res, 2023, 83(17): 2839-2857.
- 14. Martin M, Holmes FA, Ejlertsen B, et al. Neratinib after trastuzumab-based adjuvant therapy in HER2-positive breast cancer (ExteNET): 5-year analysis of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol, 2017, 18(12): 1688-1700.
- 15. 曹萌, 刘相麟, 刘喆赢, 等. 汉曲优®与帕妥珠单抗联合化疗新辅助治疗HER-2阳性乳腺癌疗效和安全评价. 中国临床研究, 2022, 35(3): 319-324.
- 16. Copeland-Halperin RS, Liu JE, Yu AF. Cardiotoxicity of HER2-targeted therapies. Curr Opin Cardiol, 2019, 34(4): 451-458.
- 17. Chai M, Li L, Wu H, et al. Lung toxicity induced by anti-HER2 antibody-drug conjugates for breast cancer. Crit Rev Oncol Hematol, 2024, 195: 104274. doi: 10.1016/j.critrevonc.2024.104274.
- 18. De Sanctis R, Jacobs F, Benvenuti C, et al. From seaside to bedside: current evidence and future perspectives in the treatment of breast cancer using marine compounds. Front Pharmacol, 2022, 13: 909566. doi: 10.3389/fphar.2022.909566.
- 19. 谢宁, 刘斌亮, 欧阳取长. 晚期HR阳性/HER2阳性乳腺癌的治疗进展. 肿瘤药学, 2022, 12(6): 703-708.
- 20. 张智滔, 赵帅. 托瑞米芬联合他莫昔芬辅助治疗晚期乳腺癌的效果及对患者生存质量的影响. 临床合理用药杂志, 2022, 15(28): 96-98.
- 21. Olayoku FR, Verhoog NJD, Louw A. Cyclopia extracts act as selective estrogen receptor subtype downregulators in estrogen receptor positive breast cancer cell lines: Comparison to standard of care breast cancer endocrine therapies and a selective estrogen receptor agonist and antagonist. Front Pharmacol, 2023, 14: 1122031. doi: 10.3389/fphar.2023.1122031.
- 22. Robertson JF. Fulvestrant (Faslodex) —how to make a good drug better. Oncologist, 2007, 12(7): 774-784.
- 23. Martel S, Bruzzone M, Ceppi M, et al. Risk of adverse events with the addition of targeted agents to endocrine therapy in patients with hormone receptor-positive metastatic breast cancer: A systematic review and meta-analysis. Cancer Treat Rev, 2018, 62: 123-132.
- 24. 陈飞, 程祺, 隋殿晶. CDK4/6抑制剂在乳腺癌治疗中的耐药机制. 中国老年学杂志, 2023, 43(19): 4858-4860.
- 25. 王晓稼, 王薇. HR阳性/HER2阴性乳腺癌CDK4/6抑制剂联合内分泌治疗—《中国临床肿瘤学会(CSCO)乳腺癌诊疗指南(2022版)》解读. 浙江医学, 2022, 44(24): 2595-2599.
- 26. Morrison L, Loibl S, Turner NC. The CDK4/6 inhibitor revolution—a game-changing era for breast cancer treatment. Nat Rev Clin Oncol, 2024, 21(2): 89-105.
- 27. 李安娜, 夏铮铮, 蔡佳立, 等. CDK4/6抑制剂一线治疗HR+/HER2– 晚期乳腺癌的快速卫生技术评估. 药物流行病学杂志, 2024, 33(9): 1017-1029.
- 28. 王蕾, 杨思原, 张季, 等. CDK4/6抑制剂在HR+ 晚期乳腺癌治疗中的耐药机制及进展后治疗策略. 中南药学, 2024, 22(4): 1030-1036.
- 29. 冯聪, 张寅斌, 吴菲, 等. BRCA1/2突变和同源重组修复缺陷(HRD)检测在乳腺癌中的临床研究进展. 现代肿瘤医学, 2023, 31(10): 1940-1943.
- 30. Li Y, Miao W, Yuan C, et al. PARP inhibitor boost the efficacy of photothermal therapy to TNBC through enhanced DNA damage and inhibited homologous recombination repair. Drug Deliv Transl Res, 202, 15(3): 955-967.
- 31. Robson M, Im SA, Senkus E, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med, 2017, 377(6): 523-533.
- 32. McCrea C, Hettle R, Gulati P, et al. Indirect treatment comparison of olaparib and talazoparib in germline BRCA-mutated HER2-negative metastatic breast cancer. J Comp Eff Res, 2021, 10(13): 1021-1030.
- 33. Shuai Q, Bai X, Li G, et al. Hematopoietic adverse events associated with PARP inhibitors: a FAERS database study. Expert Opin Drug Saf, 2024: 1-11. doi: 10.1080/14740338.2024.2443781.
- 34. Rejili M. Synergistic strategies: ADC-PARP inhibitor combinations in triple-negative breast cancer therapy. Pathol Res Pract, 2025, 272: 156075. doi: 10.1016/j.prp.2025.156075.
- 35. Miller TW, Rexer BN, Garrett JT, et al. Mutations in the phosphatidylinositol 3-kinase pathway: role in tumor progression and therapeutic implications in breast cancer. Breast Cancer Res, 2011, 13(6): 224. doi: 10.1186/bcr3039.
- 36. Verret B, Cortes J, Bachelot T, et al. Efficacy of PI3K inhibitors in advanced breast cancer. Ann Oncol, 2019, 30 Suppl 10: x12-x20.30-10. doi: 10.1093/annonc/mdz381.
- 37. Dong C, Wu J, Chen Y, et al. Activation of PI3K/AKT/mTOR pathway causes drug resistance in breast cancer. Front Pharmacol, 2021, 12: 628690. doi: 10.3389/fphar.2021.628690.
- 38. Hu Y, Guo R, Wei J, et al. Effects of PI3K inhibitor NVP-BKM120 on overcoming drug resistance and eliminating cancer stem cells in human breast cancer cells. Cell Death Dis, 2015, 6(12): e2020. doi: 10.1038/cddis.2015.363.
- 39. Alves CL, Ditzel HJ. Drugging the PI3K/AKT/mTOR pathway in ER+ breast cancer. Int J Mol Sci, 2023, 24(5): 4522. doi: 10.3390/ijms24054522.
- 40. Miricescu D, Totan A, Stanescu-Spinu II, et al. PI3K/AKT/mTOR signaling pathway in breast cancer: from molecular landscape to clinical aspects. Int J Mol Sci, 2020, 22(1): 173. doi: 10.3390/ijms22010173.
- 41. 黄昱. 乳腺癌免疫检查点抑制剂治疗进展. 中国肿瘤临床与康复, 2023, 30(6): 340-344.
- 42. Li H, Chang Y, Jin T, et al. Progress of PD-1/PD-L1 immune checkpoint inhibitors in the treatment of triple-negative breast cancer. Cancer Cell Int, 2025, 25(1): 139. doi: 10.1186/s12935-025-03769-z.
- 43. Simmons CE, Brezden-Masley C, McCarthy J, et al. Positive progress: current and evolving role of immune checkpoint inhibitors in metastatic triple-negative breast cancer. Ther Adv Med Oncol, 2020, 12: 1758835920909091. doi: 10.1177/1758835920909091.
- 44. Thomas R, Al-Khadairi G, Decock J. Immune checkpoint inhibitors in triple negative breast cancer treatment: promising future prospects. Front Oncol, 2021, 10: 600573. doi: 10.3389/fonc.2020.600573.
- 45. Mu Y, Meng Y, Du Y, et al. Clinical characteristics and treatment outcomes of HER2 mutation and HER2 fusion in 22 patients with advanced breast cancer. Thorac Cancer, 2023, 14(34): 3381-3388.
- 46. Araki K, Miyoshi Y. Mechanism of resistance to endocrine therapy in breast cancer: the important role of PI3K/Akt/mTOR in estrogen receptor-positive, HER2-negative breast cancer. Breast Cancer, 2018, 25(4): 392-401.
- 47. 孙亚蒙, 马晔, 郭润生. 乳腺癌组织样本中HER2基因拷贝数的检测分析. 上海交通大学学报(医学版), 2022, 42(11): 1589-1597.
- 48. Fan P, Jordan VC. New insights into acquired endocrine resistance of breast cancer. Cancer Drug Resist, 2019, 2(2): 198-209.
- 49. 赵佳宁, 刘月平. 乳腺癌PIK3CA突变的临床意义及其检测研究进展. 临床与实验病理学杂志, 2024, 40(9): 973-978.
- 50. Rocca A, Braga L, Volpe MC, et al. The predictive and prognostic role of RAS-RAF-MEK-ERK pathway alterations in breast cancer: revision of the literature and comparison with the analysis of cancer genomic datasets. Cancers (Basel), 2022, 14(21): 5306. doi: 10.3390/cancers14215306.
- 51. Javankiani S, Bolandi S, Soleimani A, et al. MAPK signaling mediates tamoxifen resistance in estrogen receptor-positive breast cancer. Mol Cell Biochem, 2025 May 23. doi: 10.1007/s11010-025-05304-0.
- 52. Soleimani Dodaran M, Borgoni S, Sofyalı E, et al. Candidate methylation sites associated with endocrine therapy resistance in ER+/HER2- breast cancer. BMC Cancer, 2020, 20(1): 676. doi: 10.1186/s12885-020-07100-z.
- 53. Zhang C, Xu B, Liu P. Addition of the p110α inhibitor BYL719 overcomes targeted therapy resistance in cells from Her2-positive-PTEN-loss breast cancer. Tumour Biol, 2016, 37(11): 14831-14839.
- 54. Najjary S, Mohammadzadeh R, Mokhtarzadeh A, et al. Role of miR-21 as an authentic oncogene in mediating drug resistance in breast cancer. Gene, 2020, 738: 144453. doi: 10.1016/j.gene.2020.144453.
- 55. Singh D, Assaraf YG, Gacche RN. Long non-coding RNA mediated drug resistance in breast cancer. Drug Resist Updat, 2022, 63: 100851. doi: 10.1016/j.drup.2022.100851.
- 56. Kang Y. Landscape of NcRNAs involved in drug resistance of breast cancer. Clin Transl Oncol, 2023, 25(7): 1869-1892.
- 57. Modi A, Roy D, Sharma S, et al. ABC transporters in breast cancer: Their roles in multidrug resistance and beyond. J Drug Target, 2022, 30(9): 927-947.
- 58. Dilmac S, Ozpolat B. Mechanisms of PARP-inhibitor-resistance in BRCA-mutated breast cancer and new therapeutic approaches. Cancers (Basel), 2023, 15(14): 3642. doi: 10.3390/cancers15143642.
- 59. Gote V, Nookala AR, Bolla PK, et al. Drug resistance in metastatic breast cancer: Tumor targeted nanomedicine to the rescue. Int J Mol Sci, 2021, 22(9): 4673. doi: 10.3390/ijms22094673.
- 60. Zhao F, Zhang H. Feasibility study of pyrrolitinib-based dual-target therapy for neoadjuvant treatment of HER2-positive breast cancer patients. Breast Cancer (Dove Med Press), 2024, 16: 845-853.
- 61. 王玉凤, 党会芬, 罗旭, 等. CDK4/6抑制剂联合内分泌、靶向一线治疗HR+/HER2+ 晚期乳腺癌疗效分析. 甘肃医药, 2024, 43(1): 87-90.
- 62. 吴万垠. 肿瘤靶向免疫治疗时代难点问题及中医药切入点. 中国中西医结合杂志, 2024, 44(8): 901-905.
- 63. Venetis K, Cursano G, Pescia C, et al. Liquid biopsy: cell-free DNA based analysis in breast cancer. J Liq Biopsy, 2023, 1: 100002. doi: 10.1016/j.jlb.2023.100002.
- 64. Zhang X, Ju S, Wang X, et al. Advances in liquid biopsy using circulating tumor cells and circulating cell-free tumor DNA for detection and monitoring of breast cancer. Clin Exp Med, 2019, 19(3): 271-279.
- 65. Mukhtarova G, Angin M, Caner A, et al. Effects of 5-azacytidine and N6-methyladenosine combination on apoptosis and stemness in human breast cancer stem cells. Mol Biol Rep, 2025, 52(1): 292. doi: 10.1007/s11033-025-10398-2.
- 66. Sargazi Z, Yazdani Y, Tahavvori A, et al. NFR2/ABC transporter axis in drug resistance of breast cancer cells. Mol Biol Rep, 2023, 50(6): 5407-5414.
- 67. Lin NU, Pegram M, Sahebjam S, et al. Pertuzumab plus high-dose trastuzumab in patients with progressive brain metastases and HER2-positive metastatic breast cancer: primary analysis of a phase Ⅱ study. J Clin Oncol, 2021, 39(24): 2667-2675.
- 68. Jerusalem G, Farah S, Courtois A, et al. Continuous versus intermittent extended adjuvant letrozole for breast cancer: final results of randomized phase Ⅲ SOLE (Study of Letrozole Extension) and SOLE Estrogen Substudy. Ann Oncol, 2021, 32(10): 1256-1266.
- 69. Wolf DM, Yau C, Wulfkuhle J, et al. Redefining breast cancer subtypes to guide treatment prioritization and maximize response: predictive biomarkers across 10 cancer therapies. Cancer Cell, 2022, 40(6): 609-623.
- 70. Hany D, Vafeiadou V, Picard D. CRISPR-Cas9 screen reveals a role of purine synthesis for estrogen receptor α activity and tamoxifen resistance of breast cancer cells. Sci Adv, 2023, 9(19): eadd3685. doi: 10.1126/sciadv.add3685.
- 71. Ahmed M, Daoud GH, Mohamed A, et al. New insights into the therapeutic applications of CRISPR/Cas9 genome editing in breast cancer. Genes (Basel), 2021, 12(5): 723. doi: 10.3390/genes12050723.
- 72. Wang Y, Minden A. Current molecular combination therapies used for the treatment of breast cancer. Int J Mol Sci, 2022, 23(19): 11046. doi: 10.3390/ijms231911046.
- 73. Pritchard KI, Chia SK, Simmons C, et al. Enhancing endocrine therapy combination strategies for the treatment of postmenopausal HR+/HER2- advanced breast cancer. Oncologist, 2017, 22(1): 12-24.
- 74. Bhattacharya S, Saleem SM, Singh A, et al. Empowering precision medicine: regenerative AI in breast cancer. Front Oncol, 2024, 14: 1465720. doi: 10.3389/fonc.2024.1465720.
- 75. Wang W, Zhang R, Wang X, et al. Suppression of KIF3A inhibits triple negative breast cancer growth and metastasis by repressing Rb-E2F signaling and epithelial-mesenchymal transition. Cancer Sci, 2020, 111(4): 1422-1434.
- 76. Zhang P, Li C, Li F, et al. Novel multi-omics analysis revealing metabolic heterogeneity of breast cancer cell and subsequent development of associated prognostic signature. Transl Oncol, 2025, 59: 102444. doi: 10.1016/j.tranon.2025.102444.
- 77. Wang Q, Yang N, Yan H, et al. Novel folate-phenylfuran P-gp inhibitor conjugates for overcoming multidrug resistance in MCF-7/ADR cell. ChemMedChem, 2025, 20(13): e202500216. doi: 10.1002/cmdc.202500216.