| 1. |
Acosta GJ, Singh Ospina N, Brito JP. Epidemiologic changes in thyroid disease. Curr Opin Endocrinol Diabetes Obes, 2024, 31(5): 184-190.
|
| 2. |
Zhang X, Wang X, Hu H, et al. Prevalence and trends of thyroid disease among adults, 1999-2018. Endocr Pract, 2023, 29(11): 875-880.
|
| 3. |
Jia X, Li J, Jiang Z. Association between thyroid disorders and extra-thyroidal cancers, a review. Clin Transl Oncol, 2024, 26(9): 2075-2083.
|
| 4. |
Tang Y, Zhu B, Wen X, et al. Development of a prediction model for the association between thyroid dysfunction and breast cancer. Transl Cancer Res, 2024, 13(6): 2790-2798.
|
| 5. |
Rahimi N, Feizi I, Mashayekhi F, et al. Evaluation of the thyroid and hypothyroid function after postoperative radiation therapy among breast cancer patients. Can Oncol Nurs J, 2024, 34(4): 477-489.
|
| 6. |
Liu H, Hou CJ, Tang JL, et al. Predictive model for the diagnosis of benign/malignant complex cystic and solid breast nodules. Discov Med, 2023, 35(176): 221-232.
|
| 7. |
沈洁, 刘雅静, 莫淼, 等. 人工智能辅助超声对中国女性乳腺病灶识别的有效性研究. 中国癌症杂志, 2023, 33(11): 1002-1008.
|
| 8. |
蔡佳倜, 殷晋, 周帆, 等. 面向医学影像图像分类: 基于深度学习的多模态融合发展趋势. 中国普外基础与临床杂志, 2025, 32(7): 793-800.
|
| 9. |
Petrillo A, Fusco R, Barretta ML, et al. Radiomics and artificial intelligence analysis by T2-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging to predict Breast Cancer Histological Outcome. Radiol Med, 2023, 128(11): 1347-1371.
|
| 10. |
中华医学会内分泌学分会, 中国医师协会内分泌代谢科医师分会, 中华医学会核医学分会, 等. 中国甲状腺功能亢进症和其他原因所致甲状腺毒症诊治指南. 国际内分泌代谢杂志, 2022, 42(5): 401-450.
|
| 11. |
中华医学会, 中华医学会杂志社, 中华医学会全科医学分会, 等. 甲状腺功能减退症基层诊疗指南 (2019年). 中华全科医师杂志, 2019, 18(11): 1022-1028.
|
| 12. |
吴宗汶, 廖亚周, 黄乘胜, 等. 乳腺癌与甲状腺癌的发病相关性分析. 安徽医药, 2025, 29(2): 306-309.
|
| 13. |
Wang YW, Kuo TT, Chou YH, et al. Breast tumor classification using short-resnet with pixel-based tumor probability map in ultrasound images. Ultrason Imaging, 2023, 45(2): 74-84.
|
| 14. |
陈燕, 石一涵, 邢雷, 等. 超声造影在评估乳腺癌腋窝及内乳淋巴结转移中的价值. 中国普外基础与临床杂志, 2023, 30(3): 333-337.
|
| 15. |
Sun P, Guo R, Hu X, et al. Predicting axillary lymph node metastasis in breast cancer based on ultrasound radiofrequency time-series analysis. Acta Radiol, 2024, 65(10): 1178-1185.
|
| 16. |
Zhang D, Zhou W, Lu WW, et al. Ultrasound-based deep learning radiomics nomogram for the assessment of lymphovascular invasion in invasive breast cancer: a multicenter study. Acad Radiol, 2024, 31(10): 3917-3928.
|
| 17. |
Zhao W, Su X, Guo Y, et al. Deep learning based ultrasonic visualization of distal humeral cartilage for image-guided therapy: a pilot validation study. Quant Imaging Med Surg, 2023, 13(8): 5306-5320.
|
| 18. |
Luo X, Li Z, Xu C, et al. Semi-supervised thyroid nodule detection in ultrasound videos. IEEE Trans Med Imaging, 2024, 43(5): 1792-1803.
|
| 19. |
Wang J, Jiang J, Zhang D, et al. An integrated AI model to improve diagnostic accuracy of ultrasound and output known risk features in suspicious thyroid nodules. Eur Radiol, 2022, 32(3): 2120-2129.
|
| 20. |
Lan T, Kuang S, Liang P, et al. MRI-based deep learning and radiomics for prediction of occult cervical lymph node metastasis and prognosis in early-stage oral and oropharyngeal squamous cell carcinoma: a diagnostic study. Int J Surg, 2024, 110(8): 4648-4659.
|