1. |
Blank R, Napolitano LM. Epidemiology of ARDS and ALI. Crit Care Clin, 2011, 27(3): 439-58.
|
2. |
Bellani G, Laffey JG, Pham T, et al. Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA, 2016, 315: 788-800.
|
3. |
Bastia L, Rozé H, Brochard L J. Asymmetrical lung injury: management and outcome. Semin Respir Crit Care Med, 2022, 43(03): 369-378.
|
4. |
See KC, Sahagun J, Taculod J. Patient characteristics and outcomes associated with adherence to the low PEEP/FiO2 table for acute respiratory distress syndrome. Sci Rep, 2021, 11: 14619.
|
5. |
Brower RG, Lanken PN, MacIntyre N, et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med, 2004, 351: 327-36.
|
6. |
Meade MO, Cook DJ, Guyatt GH, et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA, 2008, 299: 637-45.
|
7. |
Sarge T, Baedorf-Kassis E, Banner-Goodspeed V, et al. Effect of esophageal pressure–guided positive end-expiratory pressure on survival from acute respiratory distress syndrome: a risk-based and mechanistic reanalysis of the EPVent-2 Trial. Am J Respir Crit Care Med, 2021, 204(10): 1153-1163.
|
8. |
Bouhemad B, Brisson H, Le-Guen M, et al. Bedside ultrasound assessment of positive end-expiratory pressure–induced lung recruitment. Am J Respir Crit Care Med, 2011, 183(3): 341-347.
|
9. |
Tang KQ, Yang SL, Zhang B, et al. Ultrasonic monitoring in the assessment of pulmonary recruitment and the best positive end-expiratory pressure. Medicine, 2017, 96(39).
|
10. |
Costa EL, Lima RG, Amato MB. Electrical impedance tomography. Curr Opin Crit Care, 2009, 15: 18-24.
|
11. |
Rabbani K S, Kabir A. Studies on the effect of the third dimension on a two-dimensional electrical impedance tomography system. Clin Phys Physiol Meas, 1991, 12(4): 393.
|
12. |
Grychtol B, Müller B, Adler A. 3D EIT image reconstruction with GREIT. Physiological measurement, 2016, 37(6): 785.
|
13. |
Bachmann MC, Morais C, Bugedo G, et al. Electrical impedance tomography in acute respiratory distress syndrome. Crit Care, 2018, 22(1): 263.
|
14. |
Hinz J, Hahn G, Neumann P et al. End-expiratory lung impedance change enables bedside monitoring of end-expiratory lung volume change. Intensive Care Med, 2003, 29: 37-43.
|
15. |
Dargaville, PA, Rimensberger PC, Frerichs I. Regional tidal ventilation and compliance during a stepwise vital capacity manoeuvre. Intensive Care Med, 2010, 36(11): 1953-1961.
|
16. |
Zick G, Elke G, Becher T, et al. Effect of PEEP and tidal volume on ventilation distribution and end-expiratory lung volume: a prospective experimental animal and pilot clinical study. PLoS One, 2013, 8(8): e72675.
|
17. |
Costa EVL, Borges JB, Melo A et al. Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography. Intensive Care Med. 2009, 35(6): 1132-1137.
|
18. |
Zhao Z, Pulletz S, Frerichs I, et al. The EIT-based global inhomogeneity index is highly correlated with regional lung opening in patients with acute respiratory distress syndrome. BMC Res Notes, 2014, 7: 82.
|
19. |
Zhao Z Möller K, Steinmann D, et al. Evaluation of an electrical impedance tomography-based global inhomogeneity index for pulmonary ventilation distribution. Intensive Care Med, 2009, 35(11): 1900-1906.
|
20. |
Wrigge H, Zinserling J, Muders T, et al. Electrical impedance tomography compared with thoracic computed tomography during a slow inflation maneuver in experimental models of lung injury. Crit Care Med, 2008, 36(3): 903-909.
|
21. |
Muders T, Luepschen H, Zinserling J, et al. Tidal recruitment assessed by electrical impedance tomography and computed tomography in a porcine model of lung injury. Crit Care Med, 2012, 40(3): 903-911.
|
22. |
Perier F, Tuffet S, Maraffi T, et al. Electrical impedance tomography to titrate positive end-expiratory pressure in COVID-19 acute respiratory distress syndrome. Crit Care, 2020, 24(1): 678.
|
23. |
PuelF, CrognierL, SouléC, et al. Assessment of electrical impedance tomography to set optimal positive end-expiratory pressure for veno-venous ECMO-treated severe ARDS patients. Crit Care, 2020, 60: 38-44.
|
24. |
BecherT, BuchholzV, HasselD, et al. Individualization of PEEP and tidal volume in ARDS patients with electrical impedance tomography: a pilot feasibility study. Ann Intensive Care, 2021, 11(1): 89.
|
25. |
Hochhausen N, Biener I, Rossaint R, et al. Optimizing PEEP by electrical impedance tomography in a porcine animal model of ARDS. Respir Care, 2017, 62(3): 340-349.
|
26. |
中国卫生信息与健康医疗大数据学会重症医学分会标准委员会, 北京肿瘤学会重症医学专业委员会, 中国重症肺电阻抗工作组. 肺电阻抗成像技术在重症呼吸管理中的临床应用中国专家共识. 中华医学杂志, 2022, 102(9): 615-628.
|
27. |
Erlandsson K, Odenstedt H, Lundin S, et al. Positive end-expiratory pressure optimization using electric impedance tomography in morbidly obese patients during laparoscopic gastric bypass surgery. Acta Anaesthesiol Scand, 2006, 50(7): 833-839.
|
28. |
Eronia N, Mauri T, Maffezzini E, et al. Bedside selection of positive end-expiratory pressure by electrical impedance tomography in hypoxemic patients: a feasibility study. Ann Intensive Care, 2017, 7(1): 76.
|
29. |
Berg Mvd, Maarten, Hoeven Hvd. In patients with ARDS, optimal PEEP should not be determined using the intersection of relative collapse and relative overdistention. Am J Respir Crit Care Med, 2020, 15;202(8): 1189.
|
30. |
Hsu HJ, Chang HT, Zhao ZQ, et al. Positive end-expiratory pressure titration with electrical impedance tomography and pressure–volume curve: A randomized trial in moderate to severe ARDS. Physiol Meas, 2021, 6;42(1): 014002.
|
31. |
Zhao Z, Steinmann D, Frerichs I, et al. PEEP titration guided by ventilation homogeneity: a feasibility study using electrical impedance tomography. Crit Care, 2010, 14(1): R8.
|
32. |
Shono A, Katayama N, Fujihara T, et al. Positive end-expiratory pressure and distribution of ventilation in pneumoperitoneum combined with steep trendelenburg position. Anesthesiology 2020, 132(3): 476-490.
|
33. |
Bito K, Shono A, Kimura S, et al. Clinical Implications of Determining Individualized Positive End-Expiratory Pressure Using Electrical Impedance Tomography in Post-Cardiac Surgery Patients: A Prospective, Non-Randomized Interventional Study. J Clin Med, 2022, 11(11): 3022.
|
34. |
Liu X, Liu X, Meng J, et al. Electrical impedance tomography for titration of positive end-expiratory pressure in acute respiratory distress syndrome patients with chronic obstructive pulmonary disease. Crit Care, 2022, 26(1): 339.
|
35. |
Somhorst P, van der Zee P, Endeman H, et al. PEEP-FiO2 table versus EIT to titrate PEEP in mechanically ventilated patients with COVID-19-related ARDS. Crit Care, 2022, 26(1): 272.
|
36. |
Jimenez J V, Munroe E, Weirauch A J, et al. Electric impedance tomography-guided PEEP titration reduces mechanical power in ARDS: a randomized crossover pilot trial. Crit Care, 2023, 27(1): 1-7.
|
37. |
Jonkman AH, Alcala GC, Pavlovsky B, et al. Lung recruitment assessed by electrical impedance tomography (RECRUIT): a multicenter study of COVID-19 acute respiratory distress syndrome. Am J Respir Crit Care Med, 2023, 208(1): 25-38.
|
38. |
Martinsson A, Houltz E, Wallinder A, et al. Lung recruitment in the prone position after cardiac surgery: a randomised controlled study. Br J Anaesth, 2021, 126(5): 1067-1074.
|
39. |
Zarantonello F, Sella N, Pettenuzzo T, et al. Early physiologic effects of prone positioning in COVID-19 acute respiratory distress syndrome. Anesthesiology, 2022, 137: 327-339.
|
40. |
Franchineau G, Bréchot N, Hekimian G, et al. Prone positioning monitored by electrical impedance tomography in patients with severe acute respiratory distress syndrome on veno-venous ECMO. Ann Intensive Care, 2020, 10(1): 12.
|
41. |
Theerawit P, Pukapong P, Sutherasan Y. Relationship between lung ultrasound and electrical impedance tomography as regional assessment tools during PEEP titration in acute respiratory distress syndrome caused by multi-lobar pneumonia: a pilot study. J Clin Monit Comput, 2023, 37(3): 889-897.
|
42. |
Slobod D, Leali M, Spinelli E, et al. Integrating electrical impedance tomography and transpulmonary pressure monitoring to personalize PEEP in hypoxemic patients undergoing pressure support ventilation. Crit Care, 2022, 26(1): 1-4.
|