• 1. The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730000, P. R. China;
  • 2. Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P. R. China;
LI Yulan, Email: jasm@sina.com
Export PDF Favorites Scan Get Citation

Objective To investigate the effect of succinate induced polarization of MH-S murine alveolar macrophage cells on hyperoxia-induced epithelial-mesenchymal transition (EMT) of MLE-12 mouse alveolar epithelial cells. Methods  Determine the exposure time: MLE-12 cells was cultured in an incubator with 95%O2 for different time to establish a cell model of acute hyperoxia-induced lung injury. The relative expression of EMT-related proteins (E-cadherin, N-cadherin, vimentin) was determined by Western blotting. Co-culture of MLE-12 and MH-S to explore the influence of MH-S on EMT: MLE-12 was divided into hyperoxia group for 0h, hyperoxia group for 48h and co-cultured with MH-S hyperoxia group for 48h (Co). The relative expression of EMT-related proteins was determined by Western blotting. Determination of succinate concentration and its effect on MH-S polarization and succinate receptor GPR91: MLE-12 was cultured in different concentrations of succinate medium for 24h, and the cell viability was determined by CCK-8. MH-S was divided into control group (C) and succinate group (S). Group C was cultured for 24h, and group S was added with succinate at the above concentration. The relative expression of GPR91 and polarization-related factor mRNA in MH-S was measured by RT-qPCR, and the expression of macrophage polarization-related proteins (CD11b, CD206, CD86) was measured by flow cytometry. Study on the effect of succinate on EMT by cell co-culture: MLE-12 and MH-S were co-cultured in a Transwell chamber and divided into control group (Co), succinate group (SUC) and GPR91 inhibitor group (I). Results  Expression of EMT-related proteins in four groups of MLE-12 at different times: Compared with 0h, the expression of vimentin and N-cadherin in 24h and 48h increased, while the expression of E-cadherin in 48 h and 72 h decreased (P<0.05), and there was no significant difference in other groups. The follow-up experiment was conducted under hyperoxia conditions for 48h. Influence of MH-S on EMT: The expression of vimentin and N-cadherin in Co group was higher than that in 48h, and the expression of E-cadherin was lower than that in 48h (P<0.05). After 24 h of intervention with different concentrations of succinate on MLE-12, compared with the 0mmol/L, the cell viability of 2.5mmol/L, 1mmol/L and 500 μmol/L increased (P<0.05), and there was no significant difference in other groups, so the 1mmol/L succinate concentration was selected for subsequent experiment. Compared with group C, the expression of GPR91 mRNA in group S increased, and the expression of iNOS and CD86 mRNA in group S increased (P<0.05), but there was no significant difference in other groups. The analysis of flow cytometry showed that 1mmol/L succinate could increase the number and proportion of CD86+CD206 alveolar macrophages. Compared with Co group, the expression of vimentin and N-cadherin in SUC group increased, while the expression of E-cadherin decreased. Compared with SUC group, the expression of vimentin and N-cadherin in group I decreased, while the expression of E-cadherin increased (P<0.05). Conclusion  Succinate can induce mouse alveolar macrophages polarization to M1 through GPR91, enhance EMT of mouse alveolar epithelial cell injury model under hyperoxia, and promote the formation of pulmonary fibrosis.

Citation: FU Wei, JIANG Shang, CHEN Suheng, QU Shanshan, LI Yulan. Effect of succinate-induced polarization of mouse alveolar macrophages on hyperoxia epithelial-mesenchymal transition. Chinese Journal of Respiratory and Critical Care Medicine, 2025, 24(1): 33-41. doi: 10.7507/1671-6205.202408009 Copy

Copyright © the editorial department of Chinese Journal of Respiratory and Critical Care Medicine of West China Medical Publisher. All rights reserved

  • Previous Article

    Effects of LncRNA-NORAD on acute lung injury in septic rats by regulating the miR-155-5p/TLR6 molecular axis
  • Next Article

    LncRNA MIR223HG regulates ATM expression affecting proliferation, migration and apoptosis of lung adenocarcinoma cells