1. |
Angus DC. Oxygen therapy for the critically ill. N Engl J Med, 2020, 382(11): 1054-1056.
|
2. |
Girardis M, Busani S, Damiani E, et al. Effect of conservative vs conventional oxygen therapy on mortality among patients in an intensive care unit: The Oxygen-ICU randomized clinical trial. JAMA, 2016, 316(15): 1583-1589.
|
3. |
Kallet RH, Matthay MA. Hyperoxic acute lung injury. Respir Care, 2013, 58(1): 123-141.
|
4. |
Chu DK, Kim LH, Young PJ, et al. Mortality and morbidity in acutely ill adults treated with liberal versus conservative oxygen therapy (IOTA): a systematic review and meta-analysis. Lancet, 2018, 391(10131): 1693-1705.
|
5. |
Capellier G, Panwar R. Is it time for permissive hypoxaemia in the intensive care unit?. Crit Care Resusc, 2011, 13(3): 139-141.
|
6. |
Simoes DC, Psarra AM, Mauad T, et al. Glucocorticoid and estrogen receptors are reduced in mitochondria of lung epithelial cells in asthma. PLoS One, 2012, 7(6): e39183.
|
7. |
Adamson IY, Young L, Bowden DH. Relationship of alveolar epithelial injury and repair to the induction of pulmonary fibrosis. Am J Pathol, 1988, 130(2): 377-383.
|
8. |
Bishop AE. Pulmonary epithelial stem cells. Cell Prolif, 2004, 37(1): 89-96.
|
9. |
Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE. Mitochondria and reactive oxygen species. Free Radic Biol Med, 2009, 47(4): 333-343.
|
10. |
Carnesecchi S, Pache JC, Barazzone-Argiroffo C. NOX enzymes: potential target for the treatment of acute lung injury. Cell Mol Life Sci, 2012, 69(14): 2373-2385.
|
11. |
Porzionato A, Sfriso MM, Mazzatenta A, et al. Effects of hyperoxic exposure on signal transduction pathways in the lung. Respir Physiol Neurobiol, 2015, 209: 106-114.
|
12. |
Hafner C, Wu J, Tiboldi A, et al. Hyperoxia induces inflammation and cytotoxicity in human adult cardiac myocytes. Shock, 2017, 47(4): 436-444.
|
13. |
Huang X, Xiu H, Zhang S, Zhang G. The role of macrophages in the pathogenesis of ALI/ARDS. Mediators Inflamm, 2018, 2018: 1264913.
|
14. |
Murray PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization: Nomenclature and experimental guidelines. Immunity, 2014, 41(1): 14-20.
|
15. |
Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis. Immunity, 2016, 44(3): 450-462.
|
16. |
Laskin DL, Sunil VR, Gardner CR, Laskin JD. Macrophages and tissue injury: Agents of defense or destruction? Annu Rev Pharmacol Toxicol, 2011, 51: 267-288.
|
17. |
Suresh MV, Aktay S, Yalamanchili G, et al. Role of succinate in airway epithelial cell regulation following traumatic lung injury. JCI Insight, 2023, 8(18).
|
18. |
Akram M. Citric acid cycle and role of its intermediates in metabolism. Cell Biochem Biophys, 2014, 68(3): 475-478.
|
19. |
Connors J, Dawe N, Van Limbergen J. The role of succinate in the regulation of intestinal inflammation. Nutrients, 2018, 11(1): 25.
|
20. |
Yue L, Lu X, Dennery PA, Yao H. Metabolic dysregulation in bronchopulmonary dysplasia: Implications for identification of biomarkers and therapeutic approaches. Redox Biol, 2021, 48: 102104.
|
21. |
Gong J, Feng Z, Peterson AL, et al. The pentose phosphate pathway mediates hyperoxia-induced lung vascular dysgenesis and alveolar simplification in neonates. JCI Insight, 2021, 6(5): e137594.
|
22. |
Antonioli L, Blandizzi C, Pacher P, Haskó G. Immunity, inflammation and cancer: a leading role for adenosine. Nat Rev Cancer, 2013, 13(12): 842-857.
|
23. |
Serhan CN, Chiang N, Dalli J, Levy BD. Lipid mediators in the resolution of inflammation. Cold Spring Harb Perspect Biol, 2014, 7(2): a016311.
|
24. |
Wang YH, Yan ZZ, Luo SD, et al. Gut microbiota-derived succinate aggravates acute lung injury after intestinal ischemia/reperfusion in mice. Eur Respir J, 2023, 61(2): 2200840.
|
25. |
Kannan S, Pang H, Foster DC, et al. Human 8-oxoguanine DNA glycosylase increases resistance to hyperoxic cytotoxicity in lung epithelial cells and involvement with altered MAPK activity. Cell Death Differ, 2006, 13(2): 311-323.
|
26. |
Sugahara K, Tokumine J, Teruya K, et al. Alveolar epithelial cells: Differentiation and lung injury. Respirology, 2006, 11 Suppl: S28-S31.
|
27. |
Cabrera-Benítez NE, Parotto M, Post M, et al. Mechanical stress induces lung fibrosis by epithelial-mesenchymal transition. Crit Care Med, 2012, 40(2): 510-517.
|
28. |
Gorowiec MR, Borthwick LA, Parker SM, et al. Free radical generation induces epithelial-to-mesenchymal transition in lung epithelium via a TGF-β1-dependent mechanism. Free Radic Biol Med, 2012, 52(6): 1024-1032.
|
29. |
Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest, 2009, 119(6): 1420-1428.
|
30. |
Phan SH. Genesis of the myofibroblast in lung injury and fibrosis. Proc Am Thorac Soc, 2012, 9(3): 148-152.
|
31. |
Tanjore H, Blackwell TS, Lawson WE. Emerging evidence for endoplasmic reticulum stress in the pathogenesis of idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol, 2012, 302(8): L721-L729.
|
32. |
Vyas-Read S, Wang W, Kato S, et al. Hyperoxia induces alveolar epithelial-to-mesenchymal cell transition. Am J Physiol Lung Cell Mol Physiol, 2014, 306(4): L326-L340.
|
33. |
Willis BC, duBois RM, Borok Z. Epithelial origin of myofibroblasts during fibrosis in the lung. Proc Am Thorac Soc, 2006, 3(4): 377-382.
|
34. |
Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest, 2003, 112(12): 1776-1784.
|
35. |
Wynn TA. Integrating mechanisms of pulmonary fibrosis. J Exp Med, 2011, 208(7): 1339-1350.
|
36. |
Wynn TA, Barron L. Macrophages: Master regulators of inflammation and fibrosis. Semin Liver Dis, 2010, 30(3): 245-257.
|
37. |
Jiang D, Liang J, Fan J, et al. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med, 2005, 11(11): 1173-1179.
|
38. |
Cassel SL, Eisenbarth SC, Iyer SS, et al. The NALP3 inflammasome is essential for the development of silicosis. Proc Natl Acad Sci USA, 2008, 105(26): 9035-9040.
|
39. |
Ingram JL, Rice AB, Geisenhoffer K, et al. IL-13 and IL-1β promote lung fibroblast growth through coordinated up-regulation of PDGF-AA and PDGF-Rα. FASEB J, 2004, 18(10): 1132-1134.
|
40. |
Wilson MS, Madala SK, Ramalingam TR, et al. Bleomycin and IL-1β-mediated pulmonary fibrosis is IL-17A dependent. J Exp Med, 2010, 207(3): 535-552.
|
41. |
Hurskainen M, Mižíková I, Cook DP, et al. Single-cell transcriptomic analysis of murine lung development on hyperoxia-induced damage. Nat Commun, 2021, 12(1): 1565.
|
42. |
Mills E, O'Neill LA. Succinate: A metabolic signal in inflammation. Trends Cell Biol, 2014, 24(5): 313-320.
|
43. |
Rubic T, Lametschwandtner G, Jost S, et al. Triggering the succinate receptor GPR91 on dendritic cells enhances immunity. Nat Immunol, 2008, 9(11): 1261-1269.
|
44. |
Saraiva AL, Veras FP, Peres RS, et al. Succinate receptor deficiency attenuates arthritis by reducing dendritic cell traffic and expansion of T(h)17 cells in the lymph nodes. FASEB J, 2018: fj201800285.
|
45. |
Tannahill GM, Curtis AM, Adamik J, et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature, 2013, 496(7444): 238-242.
|
46. |
Tretter L, Patocs A, Chinopoulos C. Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. Biochim Biophys Acta, 2016, 1857(8): 1086-1101.
|
47. |
He W, Miao FJ, Lin DC, et al. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature, 2004, 429(6988): 188-193.
|
48. |
Ariza AC, Deen PM, Robben JH. The succinate receptor as a novel therapeutic target for oxidative and metabolic stress-related conditions. Front Endocrinol, 2012, 3: 22.
|
49. |
Diehl J, Gries B, Pfeil U, et al. Expression and localization of GPR91 and GPR99 in murine organs. Cell Tissue Res, 2016, 364(2): 245-262.
|
50. |
Gilissen J, Jouret F, Pirotte B, Hanson J. Insight into SUCNR1 (GPR91) structure and function. Pharmacol Ther, 2016, 159: 56-65.
|
51. |
de Castro Fonseca M, Aguiar CJ, da Rocha Franco JA, Gingold RN, Leite MF. GPR91: Expanding the frontiers of Krebs cycle intermediates. Cell Commun Signal, 2016, 14: 3.
|
52. |
Li Y, Arita Y, Koo HC, Davis JM, Kazzaz JA. Inhibition of c-Jun N-terminal kinase pathway improves cell viability in response to oxidant injury. Am J Respir Cell Mol Biol, 2003, 29(6): 779-783.
|