1. |
Mertz HR, Walsh JH. Peptic ulcer pathophysiology. Med Clin North Am, 1991, 75(4): 799-814.
|
2. |
Lanas A, Chan FKL. Peptic ulcer disease. Lancet, 2017, 390(10094): 613-624.
|
3. |
Sung JJ, Kuipers EJ, El-Serag HB. Systematic review: the global incidence and prevalence of peptic ulcer disease. Aliment Pharmacol Ther, 2009, 29(9): 938-946.
|
4. |
Xie X, Ren K, Zhou Z, et al. The global, regional and national burden of peptic ulcer disease from 1990 to 2019: a population-based study. BMC Gastroenterol, 2022, 22(1): 58.
|
5. |
Milosavljevic T, Kostić-Milosavljević M, Jovanović I, et al. Complications of peptic ulcer disease. Dig Dis, 2011, 29(5): 491-493.
|
6. |
Søreide K, Thorsen K, Harrison EM, et al. Perforated peptic ulcer. Lancet, 2015, 386(10000): 1288-1298.
|
7. |
Leow AH, Lim YY, Liew WC, et al. Time trends in upper gastrointestinal diseases and Helicobacter pylori infection in a multiracial Asian population--a 20-year experience over three time periods. Aliment Pharmacol Ther, 2016, 43(7): 831-837.
|
8. |
Savoldi A, Carrara E, Graham DY, et al. Prevalence of antibiotic resistance in Helicobacter pylori: a systematic review and meta-analysis in World Health Organization regions. Gastroenterology, 2018, 155(5): 1372-1382.
|
9. |
Lanas A. We are using too many PPIs, and we need to stop: a European perspective. Am J Gastroenterol, 2016, 111(8): 1085-1086.
|
10. |
Iijima K, Kanno T, Koike T, et al. Helicobacter pylori-negative, non-steroidal anti-inflammatory drug: negative idiopathic ulcers in Asia. World J Gastroenterol, 2014, 20(3): 706-713.
|
11. |
Seneviratne CJ, Balan P, Suriyanarayanan T, et al. Oral microbiome-systemic link studies: perspectives on current limitations and future artificial intelligence-based approaches. Crit Rev Microbiol, 2020, 46(3): 288-299.
|
12. |
李博磊, 程磊, 周学东, 等. 口腔微生物与消化系统疾病关系的研究进展. 华西口腔医学杂志, 2018, 36(3): 331-335.
|
13. |
夏孟蛟, 金钊, 郑川, 等. 基于口腔微生态论结肠炎-癌转化的中医药干预. 中华中医药杂志, 2019, 34(6): 2566-2570.
|
14. |
张志民, 程博群. 口腔微生物与消化系统癌症关系的研究进展. 口腔医学研究, 2020, 36(2): 93-97.
|
15. |
Elghannam MT, Hassanien MH, Ameen YA, et al. Helicobacter pylori and oral-gut microbiome: clinical implications. Infection, 2024, 52(2): 289-300.
|
16. |
Ansari SA, Iqbal MUN, Khan TA, et al. Association of oral Helicobacter pylori with gastric complications. Life Sci, 2018, 205: 125-130.
|
17. |
Belizário JE, Napolitano M. Human microbiomes and their roles in dysbiosis, common diseases, and novel therapeutic approaches. Front Microbiol, 2015, 6: 1050.
|
18. |
Emdin CA, Khera AV, Kathiresan S. Mendelian randomization. JAMA, 2017, 318(19): 1925-1926.
|
19. |
Bowden J, Holmes MV. Meta-analysis and Mendelian randomization: a review. Res Synth Methods, 2019, 10(4): 486-496.
|
20. |
Nagai A, Hirata M, Kamatani Y, et al. Overview of the BioBank Japan project: study design and profile. J Epidemiol, 2017, 27: S2-S8.
|
21. |
Hozawa A, Tanno K, Nakaya N, et al. Study profile of the Tohoku Medical Megabank Community-based cohort study. J Epidemiol, 2021, 31(1): 65-76.
|
22. |
Auton A, Brooks LD, et al. A global reference for human genetic variation. Nature, 2015, 526(7571): 68-74.
|
23. |
Pierce BL, Ahsan H, Vanderweele TJ. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants. Int J Epidemiol, 2011, 40(3): 740-752.
|
24. |
Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol, 2017, 32(5): 377-389.
|
25. |
Bowden J, Davey Smith G, Haycock PC, et al. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol, 2016, 40(4): 304-314.
|
26. |
Verbanck M, Chen CY, Neale B, et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet, 2018, 50(5): 693-698.
|
27. |
Hemani G, Zheng J, Elsworth B, et al. The MR-base platform supports systematic causal inference across the human phenome. Elife, 2018, 7: e34408.
|
28. |
Baker JL, Bor B, Agnello M, et al. Ecology of the oral microbiome: beyond bacteria. Trends Microbiol, 2017, 25(5): 362-374.
|
29. |
Tan X, Wang Y, Gong T. The interplay between oral microbiota, gut microbiota and systematic diseases. J Oral Microbiol, 2023, 15(1): 2213112.
|
30. |
Dong Z, Yu K, Xin Y, et al. Association between gut microbiota and peptic ulcer disease, particularly gastric ulcer and duodenal ulcer: a two-sample Mendelian randomization study. Front Microbiol, 2024, 14: 1277300.
|
31. |
Zhao J, Hou Y, Xie T, et al. Genome-wide Mendelian randomization identifies putatively causal gut microbiota for multiple peptic ulcer diseases. Front Immunol, 2023, 14: 1260780.
|
32. |
Zhang J, Hu Y, Wu L, et al. Causal effect of gut microbiota on gastroduodenal ulcer: a two-sample Mendelian randomization study. Front Cell Infect Microbiol, 2023, 13: 1322537.
|
33. |
Kitamoto S, Nagao-Kitamoto H, Hein R, et al. The bacterial connection between the oral cavity and the gut diseases. J Dent Res, 2020, 99(9): 1021-1029.
|
34. |
Horliana AC, Chambrone L, Foz AM, et al. Dissemination of periodontal pathogens in the bloodstream after periodontal procedures: a systematic review. PLoS One, 2014, 9(5): e98271.
|
35. |
Walker MY, Pratap S, Southerland JH, et al. Role of oral and gut microbiome in nitric oxide-mediated colon motility. Nitric Oxide, 2018, 73: 81-88.
|
36. |
Schmidt TS, Hayward MR, Coelho LP, et al. Extensive transmission of microbes along the gastrointestinal tract. Elife, 2019, 8: e42693.
|
37. |
Vich Vila A, Imhann F, Collij V, et al. Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome. Sci Transl Med, 2018, 10(472): eaap8914.
|
38. |
Lim JH, Shin J, Park JS. Effect of a proton pump inhibitor on the duodenum microbiome of gastric ulcer patients. Life (Basel), 2022, 12(10): 1505.
|
39. |
Chen X, Xia C, Li Q, et al. Comparisons between bacterial communities in mucosa in patients with gastric antrum ulcer and a duodenal ulcer. Front Cell Infect Microbiol, 2018, 8: 126.
|
40. |
Fu K, Cheung AHK, Wong CC, et al. Streptococcus anginosus promotes gastric inflammation, atrophy, and tumorigenesis in mice. Cell, 2024, 187(4): 882-896.
|
41. |
Wescombe PA, Heng NC, Burton JP, et al. Streptococcal bacteriocins and the case for Streptococcus salivarius as model oral probiotics. Future Microbiol, 2009, 4(7): 819-835.
|
42. |
Wu L, Wang Z, Sun G, et al. Effects of anti-H. pylori triple therapy and a probiotic complex on intestinal microbiota in duodenal ulcer. Sci Rep, 2019, 9(1): 12874.
|
43. |
Chen L, Xu W, Lee A, et al. The impact of Helicobacter pylori infection, eradication therapy and probiotic supplementation on gut microenvironment homeostasis: an open-label, randomized clinical trial. EBioMedicine, 2018, 35: 87-96.
|
44. |
Torres MDT, Brooks EF, Cesaro A, et al. Mining human microbiomes reveals an untapped source of peptide antibiotics. Cell, 2024, 187(19): 5453-5467.
|
45. |
Larsen JM. The immune response to Prevotella bacteria in chronic inflammatory disease. Immunology, 2017, 151(4): 363-374.
|
46. |
Lim JH, Shin J, Park JS. Effect of a proton pump inhibitor on the duodenum microbiome of gastric ulcer patients. Life (Basel), 2022, 12(10): 1505.
|
47. |
Sharma P, Phatak SM, Warikoo P, et al. Crosstalk between Helicobacter pylori and gastrointestinal microbiota in various gastroduodenal diseases-a systematic review. 3 Biotech, 2023, 13(9): 303.
|
48. |
Viazis N, Argyriou K, Kotzampassi K, et al. A four-probiotics regimen combined with a standard helicobacter pylori-eradication treatment reduces side effects and increases eradication rates. Nutrients, 2022, 14(3): 632.
|
49. |
Westerik N, Reid G, Sybesma W, et al. The Probiotic Lactobacillus rhamnosus for Alleviation of Helicobacter pylori-Associated Gastric Pathology in East Africa. Front Microbiol, 2018, 9: 1873.
|
50. |
Wu S, Cui W, Zhou Q, et al. Phenyl lactic acid alleviates Helicobacter pylori infection in C57BL/6 mice. Food Funct, 2023, 14(11): 5032-5047.
|