高血压与2型糖尿病(T2DM)均为心血管和肾脏疾病重要的危险因素,且具有高度共患率。T2DM患者的高血压筛查、监测、管理等问题对改善患者预后具有重要作用。基于此背景,中华医学会糖尿病学分会糖尿病与肥胖学组和中国高血压联盟组织多学科专家制订该共识,共识通过在线调查和讨论,经文献检索、证据总结和专家评议,基于GRADE方法及GRADE证据向决策(EtD)转化框架,遴选出7个关键临床问题,并给出12条推荐意见。推荐内容涵盖了未诊断高血压的T2DM患者进行高血压筛查的方式和频率,已诊断高血压的T2DM患者的血压监测方式和频率、血压控制目标、生活方式管理以及药物使用建议等。该共识可供从事T2DM及高血压诊疗的内分泌代谢病专科、心血管病专科及全科医师参考,旨在提升我国T2DM患者高血压筛查、监测和治疗的整体管理能力,从而降低因高血压带来的心血管和肾脏疾病相关致死和致残风险,并减轻T2DM患者的治疗负担。
Copyright © the editorial department of Chinese Journal of Evidence-Based Medicine of West China Medical Publisher. All rights reserved
1. | Jia G, Sowers JR. Hypertension in diabetes: an update of basic mechanisms and clinical disease. Hypertension, 2021, 78(5): 1197-1205. |
2. | Li Y, Teng D, Shi X, et al. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: national cross sectional study. BMJ, 2020, 369: m997. |
3. | Chen Y, Yang K, Marušic A, et al. A reporting tool for practice guidelines in health care: the RIGHT statement. Ann Intern Med, 2017, 166(2): 128-132. |
4. | Li S, Zong Z, Sun X, et al. New evidence-based clinical practice guideline timely supports hospital infection control of coronavirus disease 2019. Precis Clin Med, 2020, 3(1): 1-2. |
5. | Zhou YL, Zhang YG, Zhang R, et al. Population diversity of cardiovascular outcome trials and real-world patients with diabetes in a Chinese tertiary hospital. Chin Med J, 2021, 134(11): 1317-1323. |
6. | Lindbohm JV, Sipilä PN, Mars NJ, et al. 5-year versus risk-category-specific screening intervals for cardiovascular disease prevention: a cohort study. Lancet Public Health, 2019, 4(4): e189-e199. |
7. | Moberg J, Oxman AD, Rosenbaum S, et al. The GRADE evidence to decision (EtD) framework for health system and public health decisions. Health Res Policy Syst, 2018, 16(1): 45. |
8. | Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ, 2008, 336(7650): 924-926. |
9. | Liu W, Wang W, Sun F, et al. Machine learning-assisted analysis of sublingual microcirculatory dysfunction for early cardiovascular risk evaluation and cardiovascular-kidney-metabolic syndrome stage in patients with type 2 diabetes mellitus. Diabetes Metab Res Rev, 2024, 40(6): e3835. |
10. | Guirguis-Blake JM, Evans CV, Webber EM, et al. Screening for hypertension in adults: updated evidence report and systematic review for the US Preventive Services Task Force. JAMA, 2021, 325(16): 1657-1669. |
11. | Chen S, Sudharsanan N, Huang F, et al. Impact of community based screening for hypertension on blood pressure after two years: regression discontinuity analysis in a national cohort of older adults in China. BMJ, 2019, 366: l4064. |
12. | Cohen JB, Lotito MJ, Trivedi UK, et al. Cardiovascular events and mortality in white coat hypertension: a systematic review and meta-analysis. Ann Intern Med, 2019, 170(12): 853-862. |
13. | Takeno K, Mita T, Nakayama S, et al. Masked hypertension, endothelial dysfunction, and arterial stiffness in type 2 diabetes mellitus: a pilot study. Am J Hypertens, 2012, 25(2): 165-170. |
14. | Lu J, Lu Y, Wang X, et al. Prevalence, awareness, treatment, and control of hypertension in China: data from 1. 7 million adults in a population-based screening study (China PEACE Million Persons Project). Lancet, 2017, 390(10112): 2549-2558. |
15. | Karnjanapiboonwong A, Anothaisintawee T, Chaikledkaew U, et al. Diagnostic performance of clinic and home blood pressure measurements compared with ambulatory blood pressure: a systematic review and meta-analysis. BMC Cardiovasc Disord, 2020, 20(1): 491. |
16. | Piper MA, Evans CV, Burda BU, et al. Diagnostic and predictive accuracy of blood pressure screening methods with consideration of rescreening intervals: a systematic review for the U. S. Preventive Services Task Force. Ann Intern Med, 2015, 162(3): 192-204. |
17. | Kario K, Shimbo D, Tomitani N, et al. The first study comparing a wearable watch-type blood pressure monitor with a conventional ambulatory blood pressure monitor on in-office and out-of-office settings. J Clin Hypertens (Greenwich), 2020, 22(2): 135-141. |
18. | Jones NR, McCormack T, Constanti M, et al. Diagnosis and management of hypertension in adults: NICE guideline update 2019. Br J Gen Pract, 2020, 70(691): 90-91. |
19. | 中国心脏联盟心血管疾病预防与康复专业委员会. 高血压患者血压季节性变化临床管理中国专家共识. 中华高血压杂志, 2022, 30(9): 813-817. |
20. | Al-Makki A, DiPette D, Whelton PK, et al. Hypertension pharmacological treatment in adults: a World Health Organization guideline executive summary. Hypertension, 2022, 79(1): 293-301. |
21. | Sheppard JP, Tucker KL, Davison WJ, et al. Self-monitoring of blood pressure in patients with hypertension-related multi-morbidity: systematic review and individual patient data meta-analysis. Am J Hypertens, 2020, 33(3): 243-251. |
22. | Omboni S, Gazzola T, Carabelli G, et al. Clinical usefulness and cost effectiveness of home blood pressure telemonitoring: meta-analysis of randomized controlled studies. J Hypertens, 2013, 31(3): 455-467. |
23. | McManus RJ, Mant J, Franssen M, et al. Efficacy of self-monitored blood pressure, with or without telemonitoring, for titration of antihypertensive medication (TASMINH4): an unmasked randomised controlled trial. Lancet, 2018, 391(10124): 949-959. |
24. | Niiranen TJ, Kantola IM, Vesalainen R, et al. A comparison of home measurement and ambulatory monitoring of blood pressure in the adjustment of antihypertensive treatment. Am J Hypertens, 2006, 19(5): 468-474. |
25. | Nasothimiou EG, Karpettas N, Dafni MG, et al. Patients' preference for ambulatory versus home blood pressure monitoring. J Hum Hypertens, 2014, 28(4): 224-229. |
26. | Turchin A, Goldberg SI, Shubina M, et al. Encounter frequency and blood pressure in hypertensive patients with diabetes mellitus. Hypertension, 2010, 56(1): 68-74. |
27. | Tucker KL, Sheppard JP, Stevens R, et al. Self-monitoring of blood pressure in hypertension: a systematic review and individual patient data meta-analysis. PLoS Med, 2017, 14(9): e1002389. |
28. | Verberk WJ, Kroon AA, Lenders JW, et al. Self-measurement of blood pressure at home reduces the need for antihypertensive drugs: a randomized, controlled trial. Hypertension, 2007, 50(6): 1019-1025. |
29. | Staessen JA, Den Hond E, Celis H, et al. Antihypertensive treatment based on blood pressure measurement at home or in the physician's office: a randomized controlled trial. JAMA, 2004, 291(8): 955-964. |
30. | 中国高血压防治指南修订委员会, 高血压联盟, 中华医学会心血管病学分会中国医师协会高血压专业委员会, 等. 中国高血压防治指南(2018年修订版). 中国心血管杂志, 2019, 24(1): 24-56. |
31. | Emdin CA, Rahimi K, Neal B, et al. Blood pressure lowering in type 2 diabetes: a systematic review and meta-analysis. JAMA, 2015, 313(6): 603-615. |
32. | Wang J, Chen Y, Xu W, et al. Effects of intensive blood pressure lowering on mortality and cardiovascular and renal outcomes in type 2 diabetic patients: a meta-analysis. PLoS One, 2019, 14(4): e0215362. |
33. | Liu J, Li Y, Ge J, et al. Lowering systolic blood pressure to less than 120 mm Hg versus less than 140 mm Hg in patients with high cardiovascular risk with and without diabetes or previous stroke: an open-label, blinded-outcome, randomised trial. Lancet, 2024, 404(10449): 245-255. |
34. | Wu Z, Jin C, Vaidya A, et al. Longitudinal patterns of blood pressure, incident cardiovascular events, and all-cause mortality in normotensive diabetic people. Hypertension, 2016, 68(1): 71-77. |
35. | Bangalore S, Messerli FH, Wun CC, et al. J-curve revisited: an analysis of blood pressure and cardiovascular events in the Treating to New Targets (TNT) trial. Eur Heart J, 2010, 31(23): 2897-2908. |
36. | Messerli FH, Mancia G, Conti CR, et al. Dogma disputed: can aggressively lowering blood pressure in hypertensive patients with coronary artery disease be dangerous. Ann Intern Med, 2006, 144(12): 884-893. |
37. | Arguedas JA, Leiva V, Wright JM. Blood pressure targets for hypertension in people with diabetes mellitus. Cochrane Database Syst Rev, 2013, 2013(10): CD008277. |
38. | Saiz LC, Gorricho J, Garjón J, et al. Blood pressure targets for the treatment of people with hypertension and cardiovascular disease. Cochrane Database Syst Rev, 2022, 11(11): CD010315. |
39. | Aburto NJ, Ziolkovska A, Hooper L, et al. Effect of lower sodium intake on health: systematic review and meta-analyses. BMJ, 2013, 346: f1326. |
40. | Hu G, Jousilahti P, Peltonen M, et al. Urinary sodium and potassium excretion and the risk of type 2 diabetes: a prospective study in Finland. Diabetologia, 2005, 48(8): 1477-1483. |
41. | Ming L, Wang D, Zhu Y. Association of sodium intake with diabetes in adults without hypertension: evidence from the National Health and Nutrition Examination Survey 2009-2018. Front Public Health, 2023, 11: 1118364. |
42. | Horikawa C, Yoshimura Y, Kamada C, et al. Dietary sodium intake and incidence of diabetes complications in Japanese patients with type 2 diabetes: analysis of the Japan Diabetes Complications Study (JDCS). J Clin Endocrinol Metab, 2014, 99(10): 3635-3643. |
43. | Hodson EM, Cooper TE. Altered dietary salt intake for preventing diabetic kidney disease and its progression. Cochrane Database Syst Rev, 2023, (1): CD006763. |
44. | Kwakernaak AJ, Krikken JA, Binnenmars SH, et al. Effects of sodium restriction and hydrochlorothiazide on RAAS blockade efficacy in diabetic nephropathy: a randomised clinical trial. Lancet Diabetes Endocrinol, 2014, 2(5): 385-395. |
45. | Kaczorowski J, Chambers LW, Dolovich L, et al. Improving cardiovascular health at population level: 39 community cluster randomised trial of Cardiovascular Health Awareness Program (CHAP). BMJ, 2011, 342: d442. |
46. | Xia T, Zhao F, Nianogo RA. Interventions in hypertension: systematic review and meta-analysis of natural and quasi-experiments. Clin Hypertens, 2022, 28(1): 13. |
47. | Yuan Y, Jin A, Neal B, et al. Salt substitution and salt-supply restriction for lowering blood pressure in elderly care facilities: a cluster-randomized trial. Nat Med, 2023, 29(4): 973-981. |
48. | Zhang X, Yuan Y, Li C, et al. Effect of a salt substitute on incidence of hypertension and hypotension among normotensive adults. J Am Coll Cardiol, 2024, 83(7): 711-722. |
49. | Neal B, Wu Y, Feng X, et al. Effect of salt substitution on cardiovascular events and death. N Engl J Med, 2021, 385(12): 1067-1077. |
50. | Aburto NJ, Hanson S, Gutierrez H, et al. Effect of increased potassium intake on cardiovascular risk factors and disease: systematic review and meta-analyses. BMJ, 2013, 346: f1378. |
51. | Cheng J, Zhang W, Zhang X, et al. Effect of angiotensin-converting enzyme inhibitors and angiotensin Ⅱ receptor blockers on all-cause mortality, cardiovascular deaths, and cardiovascular events in patients with diabetes mellitus: a meta-analysis. JAMA Intern Med, 2014, 174(5): 773-785. |
52. | Lv J, Perkovic V, Foote CV, et al. Antihypertensive agents for preventing diabetic kidney disease. Cochrane Database Syst Rev, 2012, (12): CD004136. |
53. | Palmer SC, Mavridis D, Navarese E, et al. Comparative efficacy and safety of blood pressure-lowering agents in adults with diabetes and kidney disease: a network meta-analysis. Lancet, 2015, 385(9982): 2047-2056. |
54. | Wu HY, Huang JW, Lin HJ, et al. Comparative effectiveness of renin-angiotensin system blockers and other antihypertensive drugs in patients with diabetes: systematic review and bayesian network meta-analysis. BMJ, 2013, 347: f6008. |
55. | Bangalore S, Fakheri R, Toklu B, et al. Diabetes mellitus as a compelling indication for use of renin angiotensin system blockers: systematic review and meta-analysis of randomized trials. BMJ, 2016, 352: i1525. |
56. | Jeffers BW, Robbins J, Bhambri R, et al. A systematic review on the efficacy of amlodipine in the treatment of patients with hypertension with concomitant diabetes mellitus and/or renal dysfunction, when compared with other classes of antihypertensive medication. Am J Ther, 2015, 22(5): 322-341. |
57. | 李胜含, 杜和越, 安康, 等. 心血管疾病一级和二级预防患者用药习惯的价值观与偏好: 一项探索式混合方法研究. 中国全科医学, 2024, 27(27): 3336-3343. |
58. | González-González JG, Díaz González-Colmenero A, Millán-Alanís JM, et al. Values, preferences and burden of treatment for the initiation of GLP-1 receptor agonists and SGLT-2 inhibitors in adult patients with type 2 diabetes: a systematic review. BMJ Open, 2021, 11(7): e049130. |
59. | Li S, Vandvik PO, Lytvyn L, et al. SGLT-2 inhibitors or GLP-1 receptor agonists for adults with type 2 diabetes: a clinical practice guideline. BMJ, 2021, 373: n1091. |
60. | Marilly E, Cottin J, Cabrera N, et al. SGLT2 inhibitors in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials balancing their risks and benefits. Diabetologia, 2022, 65(12): 2000-2010. |
61. | Shi Q, Nong K, Vandvik PO, et al. Benefits and harms of drug treatment for type 2 diabetes: systematic review and network meta-analysis of randomised controlled trials. BMJ, 2023, 381: e074068. |
62. | Zhang XL, Zhu QQ, Chen YH, et al. Cardiovascular safety, long-term noncardiovascular safety, and efficacy of sodium-glucose cotransporter 2 inhibitors in patients with type 2 diabetes mellitus: a systemic review and meta-analysis with trial sequential analysis. J Am Heart Assoc, 2018, 7(2): e007165. |
63. | Shen Y, Shi Q, Zou X, et al. Time-dependent risk of fracture in adults with type 2 diabetes receiving anti-diabetic drug: a one-stage network meta-analysis. Diabetes Metab Res Rev, 2024, 40(2): e3780. |
64. | Zheng C, Lin M, Chen Y, et al. Effects of sodium-glucose cotransporter type 2 inhibitors on cardiovascular, renal, and safety outcomes in patients with cardiovascular disease: a meta-analysis of randomized controlled trials. Cardiovasc Diabetol, 2021, 20(1): 83. |
65. | Giugliano D, Scappaticcio L, Longo M, et al. GLP-1 receptor agonists and cardiorenal outcomes in type 2 diabetes: an updated meta-analysis of eight CVOTs. Cardiovasc Diabetol, 2021, 20(1): 189. |
66. | Sun F, Wu S, Guo S, et al. Impact of GLP-1 receptor agonists on blood pressure, heart rate and hypertension among patients with type 2 diabetes: a systematic review and network meta-analysis. Diabetes Res Clin Pract, 2015, 110(1): 26-37. |
- 1. Jia G, Sowers JR. Hypertension in diabetes: an update of basic mechanisms and clinical disease. Hypertension, 2021, 78(5): 1197-1205.
- 2. Li Y, Teng D, Shi X, et al. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: national cross sectional study. BMJ, 2020, 369: m997.
- 3. Chen Y, Yang K, Marušic A, et al. A reporting tool for practice guidelines in health care: the RIGHT statement. Ann Intern Med, 2017, 166(2): 128-132.
- 4. Li S, Zong Z, Sun X, et al. New evidence-based clinical practice guideline timely supports hospital infection control of coronavirus disease 2019. Precis Clin Med, 2020, 3(1): 1-2.
- 5. Zhou YL, Zhang YG, Zhang R, et al. Population diversity of cardiovascular outcome trials and real-world patients with diabetes in a Chinese tertiary hospital. Chin Med J, 2021, 134(11): 1317-1323.
- 6. Lindbohm JV, Sipilä PN, Mars NJ, et al. 5-year versus risk-category-specific screening intervals for cardiovascular disease prevention: a cohort study. Lancet Public Health, 2019, 4(4): e189-e199.
- 7. Moberg J, Oxman AD, Rosenbaum S, et al. The GRADE evidence to decision (EtD) framework for health system and public health decisions. Health Res Policy Syst, 2018, 16(1): 45.
- 8. Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ, 2008, 336(7650): 924-926.
- 9. Liu W, Wang W, Sun F, et al. Machine learning-assisted analysis of sublingual microcirculatory dysfunction for early cardiovascular risk evaluation and cardiovascular-kidney-metabolic syndrome stage in patients with type 2 diabetes mellitus. Diabetes Metab Res Rev, 2024, 40(6): e3835.
- 10. Guirguis-Blake JM, Evans CV, Webber EM, et al. Screening for hypertension in adults: updated evidence report and systematic review for the US Preventive Services Task Force. JAMA, 2021, 325(16): 1657-1669.
- 11. Chen S, Sudharsanan N, Huang F, et al. Impact of community based screening for hypertension on blood pressure after two years: regression discontinuity analysis in a national cohort of older adults in China. BMJ, 2019, 366: l4064.
- 12. Cohen JB, Lotito MJ, Trivedi UK, et al. Cardiovascular events and mortality in white coat hypertension: a systematic review and meta-analysis. Ann Intern Med, 2019, 170(12): 853-862.
- 13. Takeno K, Mita T, Nakayama S, et al. Masked hypertension, endothelial dysfunction, and arterial stiffness in type 2 diabetes mellitus: a pilot study. Am J Hypertens, 2012, 25(2): 165-170.
- 14. Lu J, Lu Y, Wang X, et al. Prevalence, awareness, treatment, and control of hypertension in China: data from 1. 7 million adults in a population-based screening study (China PEACE Million Persons Project). Lancet, 2017, 390(10112): 2549-2558.
- 15. Karnjanapiboonwong A, Anothaisintawee T, Chaikledkaew U, et al. Diagnostic performance of clinic and home blood pressure measurements compared with ambulatory blood pressure: a systematic review and meta-analysis. BMC Cardiovasc Disord, 2020, 20(1): 491.
- 16. Piper MA, Evans CV, Burda BU, et al. Diagnostic and predictive accuracy of blood pressure screening methods with consideration of rescreening intervals: a systematic review for the U. S. Preventive Services Task Force. Ann Intern Med, 2015, 162(3): 192-204.
- 17. Kario K, Shimbo D, Tomitani N, et al. The first study comparing a wearable watch-type blood pressure monitor with a conventional ambulatory blood pressure monitor on in-office and out-of-office settings. J Clin Hypertens (Greenwich), 2020, 22(2): 135-141.
- 18. Jones NR, McCormack T, Constanti M, et al. Diagnosis and management of hypertension in adults: NICE guideline update 2019. Br J Gen Pract, 2020, 70(691): 90-91.
- 19. 中国心脏联盟心血管疾病预防与康复专业委员会. 高血压患者血压季节性变化临床管理中国专家共识. 中华高血压杂志, 2022, 30(9): 813-817.
- 20. Al-Makki A, DiPette D, Whelton PK, et al. Hypertension pharmacological treatment in adults: a World Health Organization guideline executive summary. Hypertension, 2022, 79(1): 293-301.
- 21. Sheppard JP, Tucker KL, Davison WJ, et al. Self-monitoring of blood pressure in patients with hypertension-related multi-morbidity: systematic review and individual patient data meta-analysis. Am J Hypertens, 2020, 33(3): 243-251.
- 22. Omboni S, Gazzola T, Carabelli G, et al. Clinical usefulness and cost effectiveness of home blood pressure telemonitoring: meta-analysis of randomized controlled studies. J Hypertens, 2013, 31(3): 455-467.
- 23. McManus RJ, Mant J, Franssen M, et al. Efficacy of self-monitored blood pressure, with or without telemonitoring, for titration of antihypertensive medication (TASMINH4): an unmasked randomised controlled trial. Lancet, 2018, 391(10124): 949-959.
- 24. Niiranen TJ, Kantola IM, Vesalainen R, et al. A comparison of home measurement and ambulatory monitoring of blood pressure in the adjustment of antihypertensive treatment. Am J Hypertens, 2006, 19(5): 468-474.
- 25. Nasothimiou EG, Karpettas N, Dafni MG, et al. Patients' preference for ambulatory versus home blood pressure monitoring. J Hum Hypertens, 2014, 28(4): 224-229.
- 26. Turchin A, Goldberg SI, Shubina M, et al. Encounter frequency and blood pressure in hypertensive patients with diabetes mellitus. Hypertension, 2010, 56(1): 68-74.
- 27. Tucker KL, Sheppard JP, Stevens R, et al. Self-monitoring of blood pressure in hypertension: a systematic review and individual patient data meta-analysis. PLoS Med, 2017, 14(9): e1002389.
- 28. Verberk WJ, Kroon AA, Lenders JW, et al. Self-measurement of blood pressure at home reduces the need for antihypertensive drugs: a randomized, controlled trial. Hypertension, 2007, 50(6): 1019-1025.
- 29. Staessen JA, Den Hond E, Celis H, et al. Antihypertensive treatment based on blood pressure measurement at home or in the physician's office: a randomized controlled trial. JAMA, 2004, 291(8): 955-964.
- 30. 中国高血压防治指南修订委员会, 高血压联盟, 中华医学会心血管病学分会中国医师协会高血压专业委员会, 等. 中国高血压防治指南(2018年修订版). 中国心血管杂志, 2019, 24(1): 24-56.
- 31. Emdin CA, Rahimi K, Neal B, et al. Blood pressure lowering in type 2 diabetes: a systematic review and meta-analysis. JAMA, 2015, 313(6): 603-615.
- 32. Wang J, Chen Y, Xu W, et al. Effects of intensive blood pressure lowering on mortality and cardiovascular and renal outcomes in type 2 diabetic patients: a meta-analysis. PLoS One, 2019, 14(4): e0215362.
- 33. Liu J, Li Y, Ge J, et al. Lowering systolic blood pressure to less than 120 mm Hg versus less than 140 mm Hg in patients with high cardiovascular risk with and without diabetes or previous stroke: an open-label, blinded-outcome, randomised trial. Lancet, 2024, 404(10449): 245-255.
- 34. Wu Z, Jin C, Vaidya A, et al. Longitudinal patterns of blood pressure, incident cardiovascular events, and all-cause mortality in normotensive diabetic people. Hypertension, 2016, 68(1): 71-77.
- 35. Bangalore S, Messerli FH, Wun CC, et al. J-curve revisited: an analysis of blood pressure and cardiovascular events in the Treating to New Targets (TNT) trial. Eur Heart J, 2010, 31(23): 2897-2908.
- 36. Messerli FH, Mancia G, Conti CR, et al. Dogma disputed: can aggressively lowering blood pressure in hypertensive patients with coronary artery disease be dangerous. Ann Intern Med, 2006, 144(12): 884-893.
- 37. Arguedas JA, Leiva V, Wright JM. Blood pressure targets for hypertension in people with diabetes mellitus. Cochrane Database Syst Rev, 2013, 2013(10): CD008277.
- 38. Saiz LC, Gorricho J, Garjón J, et al. Blood pressure targets for the treatment of people with hypertension and cardiovascular disease. Cochrane Database Syst Rev, 2022, 11(11): CD010315.
- 39. Aburto NJ, Ziolkovska A, Hooper L, et al. Effect of lower sodium intake on health: systematic review and meta-analyses. BMJ, 2013, 346: f1326.
- 40. Hu G, Jousilahti P, Peltonen M, et al. Urinary sodium and potassium excretion and the risk of type 2 diabetes: a prospective study in Finland. Diabetologia, 2005, 48(8): 1477-1483.
- 41. Ming L, Wang D, Zhu Y. Association of sodium intake with diabetes in adults without hypertension: evidence from the National Health and Nutrition Examination Survey 2009-2018. Front Public Health, 2023, 11: 1118364.
- 42. Horikawa C, Yoshimura Y, Kamada C, et al. Dietary sodium intake and incidence of diabetes complications in Japanese patients with type 2 diabetes: analysis of the Japan Diabetes Complications Study (JDCS). J Clin Endocrinol Metab, 2014, 99(10): 3635-3643.
- 43. Hodson EM, Cooper TE. Altered dietary salt intake for preventing diabetic kidney disease and its progression. Cochrane Database Syst Rev, 2023, (1): CD006763.
- 44. Kwakernaak AJ, Krikken JA, Binnenmars SH, et al. Effects of sodium restriction and hydrochlorothiazide on RAAS blockade efficacy in diabetic nephropathy: a randomised clinical trial. Lancet Diabetes Endocrinol, 2014, 2(5): 385-395.
- 45. Kaczorowski J, Chambers LW, Dolovich L, et al. Improving cardiovascular health at population level: 39 community cluster randomised trial of Cardiovascular Health Awareness Program (CHAP). BMJ, 2011, 342: d442.
- 46. Xia T, Zhao F, Nianogo RA. Interventions in hypertension: systematic review and meta-analysis of natural and quasi-experiments. Clin Hypertens, 2022, 28(1): 13.
- 47. Yuan Y, Jin A, Neal B, et al. Salt substitution and salt-supply restriction for lowering blood pressure in elderly care facilities: a cluster-randomized trial. Nat Med, 2023, 29(4): 973-981.
- 48. Zhang X, Yuan Y, Li C, et al. Effect of a salt substitute on incidence of hypertension and hypotension among normotensive adults. J Am Coll Cardiol, 2024, 83(7): 711-722.
- 49. Neal B, Wu Y, Feng X, et al. Effect of salt substitution on cardiovascular events and death. N Engl J Med, 2021, 385(12): 1067-1077.
- 50. Aburto NJ, Hanson S, Gutierrez H, et al. Effect of increased potassium intake on cardiovascular risk factors and disease: systematic review and meta-analyses. BMJ, 2013, 346: f1378.
- 51. Cheng J, Zhang W, Zhang X, et al. Effect of angiotensin-converting enzyme inhibitors and angiotensin Ⅱ receptor blockers on all-cause mortality, cardiovascular deaths, and cardiovascular events in patients with diabetes mellitus: a meta-analysis. JAMA Intern Med, 2014, 174(5): 773-785.
- 52. Lv J, Perkovic V, Foote CV, et al. Antihypertensive agents for preventing diabetic kidney disease. Cochrane Database Syst Rev, 2012, (12): CD004136.
- 53. Palmer SC, Mavridis D, Navarese E, et al. Comparative efficacy and safety of blood pressure-lowering agents in adults with diabetes and kidney disease: a network meta-analysis. Lancet, 2015, 385(9982): 2047-2056.
- 54. Wu HY, Huang JW, Lin HJ, et al. Comparative effectiveness of renin-angiotensin system blockers and other antihypertensive drugs in patients with diabetes: systematic review and bayesian network meta-analysis. BMJ, 2013, 347: f6008.
- 55. Bangalore S, Fakheri R, Toklu B, et al. Diabetes mellitus as a compelling indication for use of renin angiotensin system blockers: systematic review and meta-analysis of randomized trials. BMJ, 2016, 352: i1525.
- 56. Jeffers BW, Robbins J, Bhambri R, et al. A systematic review on the efficacy of amlodipine in the treatment of patients with hypertension with concomitant diabetes mellitus and/or renal dysfunction, when compared with other classes of antihypertensive medication. Am J Ther, 2015, 22(5): 322-341.
- 57. 李胜含, 杜和越, 安康, 等. 心血管疾病一级和二级预防患者用药习惯的价值观与偏好: 一项探索式混合方法研究. 中国全科医学, 2024, 27(27): 3336-3343.
- 58. González-González JG, Díaz González-Colmenero A, Millán-Alanís JM, et al. Values, preferences and burden of treatment for the initiation of GLP-1 receptor agonists and SGLT-2 inhibitors in adult patients with type 2 diabetes: a systematic review. BMJ Open, 2021, 11(7): e049130.
- 59. Li S, Vandvik PO, Lytvyn L, et al. SGLT-2 inhibitors or GLP-1 receptor agonists for adults with type 2 diabetes: a clinical practice guideline. BMJ, 2021, 373: n1091.
- 60. Marilly E, Cottin J, Cabrera N, et al. SGLT2 inhibitors in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials balancing their risks and benefits. Diabetologia, 2022, 65(12): 2000-2010.
- 61. Shi Q, Nong K, Vandvik PO, et al. Benefits and harms of drug treatment for type 2 diabetes: systematic review and network meta-analysis of randomised controlled trials. BMJ, 2023, 381: e074068.
- 62. Zhang XL, Zhu QQ, Chen YH, et al. Cardiovascular safety, long-term noncardiovascular safety, and efficacy of sodium-glucose cotransporter 2 inhibitors in patients with type 2 diabetes mellitus: a systemic review and meta-analysis with trial sequential analysis. J Am Heart Assoc, 2018, 7(2): e007165.
- 63. Shen Y, Shi Q, Zou X, et al. Time-dependent risk of fracture in adults with type 2 diabetes receiving anti-diabetic drug: a one-stage network meta-analysis. Diabetes Metab Res Rev, 2024, 40(2): e3780.
- 64. Zheng C, Lin M, Chen Y, et al. Effects of sodium-glucose cotransporter type 2 inhibitors on cardiovascular, renal, and safety outcomes in patients with cardiovascular disease: a meta-analysis of randomized controlled trials. Cardiovasc Diabetol, 2021, 20(1): 83.
- 65. Giugliano D, Scappaticcio L, Longo M, et al. GLP-1 receptor agonists and cardiorenal outcomes in type 2 diabetes: an updated meta-analysis of eight CVOTs. Cardiovasc Diabetol, 2021, 20(1): 189.
- 66. Sun F, Wu S, Guo S, et al. Impact of GLP-1 receptor agonists on blood pressure, heart rate and hypertension among patients with type 2 diabetes: a systematic review and network meta-analysis. Diabetes Res Clin Pract, 2015, 110(1): 26-37.