west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "人脐静脉内皮细胞" 17 results
  • Expression and Function of CD105 in Angiogenesis

    Objective To develop an in vitro three-dimensional angiogenesis system and analyze the expression and function of CD105 in angiogenesis. Methods After primary human umbilical vein endothelial cells (HUVEC) were purified and cultured, the microcarriers were coated with HUVEC and then embedded and cultured into fibrin gel. The angiogenesis process of HUVEC on the microcarriers was formed. The expression of CD105 during this process was detected by reverse transcription polymerase chain reaction (RT-PCR). Antisense oligodeoxynucleotide (ASODN) was used to inhibit the expression of CD105 and the changes of the angiogenesis process were analyzed quantitatively. Results HUVEC on the microcarriers which were embedded into the fibrin gel, occurred the angiogenesis process of sprouts, branches and capillary networks with lumina. During this process, CD105 was over expressed in the periods of forming sprouts and branches, and depressed in the relatively steady periods including the periods before forming sprouts and after forming capillary networks. While the expression of CD105 was inhibited by ASODN, the angiogenesis process was significantly inhibited. Conclusions The expression of CD105 is varied within the angiogenesis process, over expressing during the sprouts and branches forming periods. Inhibiting the expression of CD105 could efficiently inhibit angiogenesis.

    Release date:2016-09-08 10:56 Export PDF Favorites Scan
  • Effects of gastric cancer cell exosomes carrying miR-552 on the proliferation, migration, andangiogenesis of HUVEC cells

    Objective To investigate the effects of the MKN-45 gastric cancer cell exosomes carrying microRNA-552 (miR-552) on the proliferation, migration, and angiogenesis of human umbilical vein endothelial cells (HUVEC). Methods ① The MKN-45 cells were divided into MKN-45 blank control group (no transfection), MKN-45 miR-552 inhibitor group [transfection of plasmid inhibiting mir-552 expression (mir-552 inhibitor plasmid)], and MKN-45 negative control group [transfection of negative control plasmid (empty plasmid)], the exosomes were extracted, purified, and identified. Western blotting was used to detect the protein expression of exosomal markers [CD63, CD9, and tumor susceptibility gene 101 (TSG101)]. ② The HUVEC cells were divided into HUVEC control group (added PBS), HUVEC-exosome group (co-cultured with exosomes of MKN-45 cell), HUVEC-negative control exosome group (co-cultured with exosomes of MKN-45 cell transfected with negative control plasmid), and HUVEC-miR-552 inhibitor exosome group (co-cultured with exosomes of MKN-45 cell transfected with miR-552 inhibitor plasmid), exosomes tracing experiment was used to detect whether exosomes entered HUVEC cells. Real-time fluorescent quantitative PCR method was used to detect the expression of miR-552, the MTT method was used to detect the proliferation of HUVEC cells, the Transwell chamber method was used to detect the migration of HUVEC cells, the angiogenesis test was used to detect the angiogenesis ability. Results This study successfully extracted exosomes from MKN-45 gastric cancer cells. Observed by transmission electron microscope, the exosomes were all round or elliptical, with a diameter of 100–150 nm, and the exosomal vesicle structure could be seen. Western blotting detection showed that the surface markers of exosomes (CD63, CD9, and TSG101 protein) were expressed in exosomes. The results of the tracing experiment showed that exosomes derived from MKN-45 cells were successfully internalized by HUVEC cells. After MKN-45 cells were transfected with miR-552 inhibitor plasmid, compared with the MKN-45 blank control group and MKN-45 negative control group, the relative expression level of miR-552 in the exosomes decreased (P<0.05). Compared with the HUVEC control group, the cell proliferation rate at 24, 48 and 74 h increased, as well as number of migration, tubule formation nodes, and relative expression level of miR-552 in the HUVEC-exosomes group increased (P<0.05). Compared with the HUVEC-negative control exosome group, the cell proliferation rate at 24, 48 and 74 h decreased, as well as the number of migration, tubule formation nodes, and relative expression level of miR-552 in the HUVEC-miR-552 inhibitor exosome group decreased (P<0.05). Conclusion The exosomes of gastric cancer cells carrying miR-552 can significantly promote the proliferation, migration, and angiogenesis of HUVEC cells.

    Release date:2022-07-26 10:20 Export PDF Favorites Scan
  • AN EXPERIMENTAL STUDY ON THE ROLE OF KERATIN IN ANGIOGENESIS IN VITRO

    Objective To investigate the effect of keratin 17 (K-17) on the migration, prol iferation and tube formation of human umbil ical vein endothel ial cell (HUVEC), and to real ize the role of K-17 in angiogenesis. Methods After HUVEC were cultured in DMEM medium supplemented with 10%FBS overnight, K-17-siRNA-mixture (experimental group) and Ncontrol-siRNA-mixture (negative control group) were added into HUVEC, respectively, by Lipofectamine 2000 transfection assay, and the final concentration of the siRNA was 50 nmol/L. Lipofectamine 2000 alone was used as the control. After the cells were cultured for 36 hours, the cell prol iferation abil ity was detected by cell counting. After 30-hour culture, the cell’s abil ities of migration and differentiation to tube were detected by 24-well Mill icell units and the collagen gel assay, respectively. In addition, non-siRNA-treated HUVEC were cultured for 24 hours in DMEM medium supplemented with 10%FBS (group A), 2%FBS (group B) and 2%FBS+10 ng/mL bFGF (group C), respectively, and then the expression of K-17 in HUVEC was detected by RT-PCR and Western blot. Results After the treatment with K-17-siRNA for 36 hours, HUVEC exhibited no significant difference in the prol iferation, compared with both control and negative control groups (P gt; 0.05). After transfected with K-17-siRNA for 30 hours, the number of HUVEC in the experimental group which migrated from the upper chamber to the lower chamber of Mill icell wells within 24 hours (3719.0 ± 319.0) was smaller than both control (7 437.5 ± 212.0) and negative control (7 356.3 ± 795.7) groups, with significant difference (P lt; 0.01). However, there was no significant difference between the control group and the negative control group (P gt; 0.05). After HUVEC were transfected with K-17- siRNA for 30 hours, the number of tubes in the experimental group, the negative control group and the control group in 24 hours was (1.1 ± 0.5), (3.6 ± 0.5) and (3.2 ± 0.6) per field, respectively. The experimental group was significantly different from both control and negative control groups (P lt; 0.01), and there was no significant difference between the negative control group and the control group (P gt; 0.05). The expression of K-17 protein in HUVEC in groups A, B and C was 0.25 ± 0.02, 0.08 ± 0.01 and 0.72 ± 0.03, respectively. There was significant difference among these three groups (P lt; 0.01). Conclusion K-17 has no impact on cell prol iferation, but may augment endothel ial cell migration, which may facil itate angiogenesis.

    Release date:2016-09-01 09:18 Export PDF Favorites Scan
  • Isolation and Identification of Primary Human Umbilical Vein Endothelial Cells

    【摘要】 目的 通过比较两种原代人脐静脉内皮细胞的分离培养方法并对细胞特异性抗原进行鉴定,探索提高原代内皮细胞体外培养存活率及纯化率的方法。 方法 采用一次性无菌注射器向人脐静脉灌注消化液,消化液的浓度和消化时间分别025%(质量体积比)胰蛋白酶,10 min和01%(质量体积比)胶原酶Ⅱ,15 min。通过在倒置显微镜下观察细胞的形态特点和用免疫荧光染色的方法对细胞进行鉴定,比较两种消化方法的优劣。 结果 01%胶原酶Ⅱ,15 min的消化方法较025%胰蛋白酶,10 min对原代人脐静脉内皮细胞有更好的分离效果,活细胞数量多且细胞纯度较高。免疫荧光染色结果表明细胞内有Ⅷ因子相关抗原表达。结论 胶原酶Ⅱ可以有效分离脐静脉内皮细胞,最佳消化条件是01%胶原酶Ⅱ,37℃,15 min。【Abstract】 Objective To explore the optimal method for primary culture of human umbilical vein endothelial cells (HUVECs). Methods HUVECs were prepared from human umbilical cords by 01% collagenase Ⅱ digestion for 15 minutes and 025 trypsinase digestion for 10 minutes,respectively. HUVECs were observed under inverted microscope and identified by immunofluorescence.The two methods of digestion were compared. Results More HUVECs were harvested through the method of 01% collagenase Ⅱ for 15 minutes,which expressed Ⅷ related antigen. Conclusion The method of 0.1% collagenase Ⅱ digestion for 15 minutes is a better choice to isolate HUVECs.

    Release date:2016-09-08 09:45 Export PDF Favorites Scan
  • Preliminary discussion on the potential mechanism of follistatin-like protein 1 in the process of proliferative diabetic retinopathy

    ObjectiveTo observe the changes of follistatin-like protein 1 (FSTL1) in serum of patients with proliferative diabetic retinopathy (PDR).MethodsTwenty PDR patients confirmed by clinical examination and 20 normal people were included in the study. Human retinal vascular endothelial cells (HRCEC) were divided into HRCEC blank control group, 3 h hypoxia group, 6 h hypoxia group. Human umbilical vein endothelial cell (HUVEC) were divided into HUVEC blank control group, 3h hypoxia group, 6h hypoxia group. Real-time quantitative PCR (RT-PCR) and ELISA were used to determine the expression of FSTL1, TGF-β, VEGF, connective tissue growth factor (CTGF) mRNA and protein in peripheral blood and cells of all groups from all subjects.ResultsThe expressions of FSTL1, TGF-β1, CTGF, VEGF mRNA in blood samples of patients with PDR were 1.79±0.58, 0.97±0.21, 1.85±0.69 and 1.38±0.44. The expressions of FSTL1, TGF-β1 protein were 1.19±0.50, 0.71±0.24 ng/ml and 734.03±116.45, 649.36±44.23 ng/L. Compared with normal people, the differences were statistically significant (tmRNA=0.90, 0.21, 2.85, 1.77; P=0.00, 0.00, 0.04, 0.02. tprotein=1.88, 7.68; P=0.00, 0.02). The cell viability of HRCEC cells in the 3 h hypoxia group and the 6 h hypoxia group were 0.66±0.05 and 0.64±0.04, respectively. Compared with the blank control group, the difference was statistically significant (F=13.02, P=0.00). The cell viability of HUVEC cells in the 3 h hypoxia group and the 6 h hypoxia group were 0.63±0.06 and 0.68±0.06, respectively. Compared with the blank control group, the difference was statistically significant (F=26.52, P=0.00). Comparison of FSTL1, TGF-β1, CTGF, and VEGF mRNA expression in HRCEC blank control group and 3 h hypoxia group, the differences were statistically significant (F=14.75, 44.93, 85.54, 6.23; P=0.01, 0.00, 0.00, 0.03). Compared with the HRCEC blank control and 3 h hypoxia group, the expressions of FSTL1 and TGF-β1 protein were statistically significant (P<0.05). There was a statistically significant difference in TGF-β1 protein expression in the hypoxic 6 h group (P=0.03) and no significant difference in FSTL1 protein expression (P=0.68). Comparison of FSTL1, TGF-β1, CTGF, and VEGF mRNA expression in HUVEC blank control group and 3h hypoxia group, the differences were statistically significant (F=19.08, 25.12, 22.89, 13.07; P=0.00, 0.00, 0.00, 0.01). Immunofluorescence staining results showed that FSTL1, TGF-β1, CTGF, and VEGF proteins were positively expressed in cells in the 3h hypoxia and 6h hypoxia groups.ConclusionThe expression of FSTL1 gene and protein in serum of PDR patients was significantly higher than that of normal people.

    Release date:2020-04-18 07:44 Export PDF Favorites Scan
  • microRNA-210 MODIFIED HUMAN UMBILICAL VEIN ENDOTHELIAL CELLS INDUCE CAPILLARY FORMATION

    Objective To construct human recombinant lentiviral expression vector of microRNA-210 (miR-210)and to explore the over-expression of miR-210 on the capillary formation in human umbilical vein endothelial cells 12 (HUVE-12). Methods The recombinant lentiviral expression vector of pGCSIL-green fluorescent protein (GFP)-pre-miR-210 wasconstructed by molecular cloning and transfected to HUVE-12 (LV-miR-210-GFP group), only pGCSIL-GFP was transfectedas control group (LV-GFP group). The miR-210 expression activity was evaluated by GFP reporter through fluorescencedetection and real-time fluorescent quantitative PCR. The ephrinA3 protein expression was measured by flow cytometry. Theconcentration of vascular endothelial growth factor (VEGF) in culture supernatant was determined by ELISA. The cells werecultured in 96-well culture plate coated with Matrigel to assess the abil ity of capillary formation. Results The recombinantplasmid pGCSIL-GFP-pre-miR-210 was confirmed by restriction endonuclease analysis and DNA sequencing. Fluorescencedetection showed that the fluorescence intensity of GFP was highest between 48 and 72 hours after transfection. Real-timefluorescent quantitative PCR showed that the miR-210 expression of LV-miR-210-GFP group was 9.72 times higher than thatin LV-GFP group (t= —11.10,P=0.00). Flow cytometry analysis showed that the positive cell rate of enphrinA3 in LV-miR-210-GFP group (12.52% ± 0.67%) was significantly lower than that in LV-GFP group (73.22% ± 1.45%) (t= —66.12,P=0.00).The concentration of VEGF in supernatant in LV-miR-210-GFP group was significantly higher than that in LV-GFP group[(305.29 ± 16.52) pg/mL vs. (42.52 ± 3.11) pg/mL, t= —27.06,P=0.00]. In vitro capillary-l ike formation assay showed that thenumber of capillaries was significantly larger in LV-miR-210-GFP group than in LV-GFP group (17.33 ± 6.33 vs. 6.33 ± 2.33,t= —2.83,P=0.04). Conclusion The recombinant lentiviral expression vector of miR-210 is constructed successfully andHUVE-12 over-expressing miR-210 can significantly increase the capillary formation, which facil itates further study on themolecular functions of miR-210 in angiogenesis.

    Release date:2016-08-31 04:23 Export PDF Favorites Scan
  • EFFECT OF HUMAN TELOMERASE REVERSE TRANSCRIPTASE mRNA INTRODUCTION ON THE GROWTH OF HUMAN UMBILICUS VEIN ENDOTHELIAL CELL

    OBJECTIVE: To elongate the proliferation life-span of human umbilicus vein endothelial cell (HUVEC). METHODS: We synthesized the human telomerase reverse transcriptase mRNA (hTERT mRNA) by in vitro transcription, then transferred the hTERT mRNA into HUVEC in quicent stage by lipofect introduction. RESULTS: Telomerase expressed transiently in HUVEC, and the cell life-span was elongated for 7 population doublings. CONCLUSION: Telomerase can be reconstructed controllably and transiently in HUVEC by hTERT mRNA introduction, this method has the potential to be used to elongate the lifespan of cells cultured in vitro.

    Release date:2016-09-01 09:35 Export PDF Favorites Scan
  • Study on visfatin-induced inflammation and necroptosis via LOX-1 in human umbilical vein endothelial cells

    The aim of the study is to identify the effects and underlying mechanisms of visfatin on inflammation and necroptosis in vascular endothelial cells. Human umbilical vein endothelial cells (HUVECs) were stimulated with visfatin or pretreated with Polyinosinic acid (LOX-1 inhibitor). By using the Western blot, RT-PCR, immunocytochemistry, enzyme-linked immunosorbent assay (ELISA), MTT and flow cytometry technique, the occurrence of inflammation and necroptosis in HUVECs were evaluated. Our results showed that 100 ng/mL visfatin significantly increased the mRNA and protein expression of monocyte chemotactic protein 1 (MCP-1) and LOX-1 after 24 hours’ treatment in HUVECs. However, pretreatment with Polyinosinic acid could significantly reduce the expression of MCP-1 compared with visfatin group. Additionally, 100 ng/mL visfatin could induce the production of necrotic features and increase the mRNA expression of BMF (one of the markers of necroptosis), while pretreating with Polyinosinic acid markedly downregulated the mRNA expression of BMF gene and promoted the cell proliferation. These results indicate that visfatin might induce inflammation and necroptosis via LOX-1 in HUVECs, suggesting that visfatin plays a central role in the development of atherosclerosis.

    Release date:2020-12-14 05:08 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY OF XENOGENEIC HEART VALVE MATERIAL

    OBJECTIVE: To explore the possibility of improving the performance of tissue engineering valve by means of preendothelialization with cultured human umbilical vein endothelial cell(hUVEC) and to develop a new xenogenic bioprosthesis valve material. METHODS: The porcine aortic valves treated by use of glutaraldehyde(GA), epoxychloropropane(EC), L-glutamic acid(L-GA) and cellular extraction(CE) respectively were divided into four groups; group 1(GA), group 2(EC), group 3(EC + L-GA), and group 4(EC + L-GA + CE). The cultured hUVECs were seeded onto the treated porcine aortic valve, then that stuff were examined by means of EC VIII factor staining, living cells counting and microscopy. RESULTS: The cultured hUVEC could adhere to culturing bottle wall an hour later, and propagated to two passages after seven days. The cells increased with serial passage at a 7-day interval. But the hUVEC grew slowly when seeded onto the treated valve material except group 4. The cells in group 4 covered the surface of valve completely seven days later, which could also be seen in group 3 but not completely. There was no cell growing in group 1, and only fewer in group 2. The living cell in groups 3 and 4 were significantly more than in groups 1 and 2 on the 3rd, 7th and 14th days (P lt; 0.01), meanwhile, the number of cells in group 4 were also significantly more than that in group 3 (P lt; 0.05). The covering area of cultured cell on the valve material in groups 3 and 4 was significantly larger than that in groups 1 and 2. The covering area of cell in group 4 was over 95%, and higher than that in group 3(60%-70%). The hUVEC of group 4 arranged in pattern of three dimension. So it could resist rising of foreign power from the cardiac cavity of high pressure and flowing volume. There was no cell on the leaflet surface in group 1, and only a few pinch of cells could be seen in group 2. CONCLUSION: The porcine aortic valve can be used to be an ideal xenogeneic valve scaffold; the scaffold of porcine aortic valve should be treated by use of epoxy-chloropropane, L-glutamic acid and cellular extraction, so that a best growing environment to the hUVEC would be given; the cultured hUVECs used to be source of seed living cell had a boundless prospects; the growing velocity of cultured hUVEC was controllable, which facilitated clinical application; and the endothelial cells of xenogeneic valve material which grew compactly onto the scaffold can resist rising of foreign power from the cardiac cavity itself.

    Release date:2016-09-01 09:35 Export PDF Favorites Scan
  • A549 Cells Promote HUVEC Migration and Angiogenesis under Hypoxic Conditions

    ObjectiveTo observe the effects of A549 cells under hypoxicconditions on the migration of human umbilical vein endothelial cells (HUVECs) and microvascular formation. MethodsAfter cultured for 24 h in normoxia condition(21% O2),hypoxia condition (2% O2),and anaerobic condition (0% O2),respectively,morphology of A549 cells was observed with inverted phase contrast microscope,proliferation was detected by MTT assay,and intracellular hypoxia-inducible factor-1α (HIF-1α) protein was detected by immunocyto-chemical technique,for determining whether the hypoxia model is successful. Then A549 cells' supernatant in the normoxic group,the hypoxia group and HUVECs culture medium were taken to intervene HUVECs. The migration of HUVECs was observed with cell scratch test,pseudopodia formation of HUVECs was observed with microfilament green fluorescent staining method,and blood vessel formation was observed with three-dimensional culture techniques in vitro. ResultsCompared with the normoxic group,the growth of A549 cells was better in the hypoxia group with more proliferation,and was poor in the anaerobic group with decreased number of cells. A549 cells in the hypoxia group and the anaerobic group both expressed HIF-1α protein,which was more obvious in the anaerobic group. Compared with the HUVECs supernatant intervention group,the hypoxia supernatant intervention group and the normoxic supernatant intervention group both had varying degrees of migration,pseudopodia structure formation and vascular lumen sample structure formation,which were more obvious in the former group. ConclusionA549 cells in hypoxic environment grow very well,proliferated significantly,but anaerobic environment is not conducive to the growth of A549 cells which found to be apoptosis. A549 cells in hypoxic environment can promote HUVECs migration,pseudopodia formation and angiogenesis.

    Release date:2016-08-30 11:31 Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content