目的 应用脑功能磁共振探讨暴力人群对愉快和悲伤面部表情认知障碍的脑功能机制。 方法 2009年3月-8月,应用宾夕法尼亚大学三维彩色愉快和悲伤情绪面部表情图片作为情绪刺激,对男性暴力行为组(n=20)和与之相匹配的正常男性(n=21),进行功能磁共振扫描,并采用SPM2对数据进行分析。 结果 愉快情绪图片刺激下,正常组比暴力组激活增加的脑区有左额中回、左前扣带回、左楔前叶、左颞中回、右中央后回和右侧小脑。悲伤情绪图片刺激下,正常组比暴力组激活增加的脑区有左额中回、左后扣带回、左楔前叶、右小脑、左颞中回及颞上回。 结论 暴力行为者对愉快和悲伤情绪的脑激活减低,主要表现在前额叶-颞叶-边缘脑区。
We investigated the baseline brain activity level in patients with major depressive disorder (MDD) by amplitude of low-frequency fluctuation (ALFF) based on resting-state functional MRI (fMRI). We examined 13 patients in the MDD group and 14 healthy volunteers in the control group by resting-state fMRI on GE Signa 3.0T. We calculated and compared the ALFF values of the two groups. In the MDD group, ALFF values in the right medial prefrontal were higher than those in control group, with statistically significant differences (P<0.001). ALFF values in the left parietal in the MDD group were lower than those in control group with statistically significant differences (P<0.001). This resting-state fMRI study suggested that the alteration brain activity in the right medial prefrontal and left parietal ALFF contributed to the understanding of the pathophysiological mechanism of MDD patients.
Migraine is the most common primary headache clinically, with high disability rate and heavy burden. Functional MRI (fMRI) plays a significant role in the study of migraine. This article reviews the main advances of migraine without aura (MwoA) based on resting-state fMRI in recent years, including the exploration of the mechanism of fMRI in the occurrence and development of MwoA in terms of regional functional activities and functional network connections, as well as the research progress of the potential clinical application of fMRI in aiding diagnosis and assessing treatment effect for MwoA. At last, this article summarizes the current distresses and prospects of fMRI research on MwoA.
ObjectiveSeizure-related respiratory or cardiac dysfunction was once thought to be the direct cause of sudden unexpected death in epilepsy (SUDEP), but both may be secondary to postictal cerebral inhibition. An important issue that has not been explored to date is the neural network basis of cerebral inhibition. Our aim was to investigate the features of neural networks in patients at high risk for SUDEP using a blood oxygen level-dependent (BOLD) resting-state functional MRI (Rs-fMRI) technique. MethodsRs-fMRI data were recorded from 13 patients at high risk for SUDEP and 12 patients at low risk for SUDEP. The amplitude of low-frequency fluctuations (ALFF) values were compared between the two groups to decipt the regional brain activities. ResultsCompared with patients at low risk for SUDEP, patients at high risk exhibited significant ALFF reductions in the right superior frontal gyrus, the left superior orbital frontal gyrus, the left insula and the left thalamus; and ALFF increase in the right middle cigulum gyrus, the right supplementary motor area and the left thalamus. ConclusionsThese findings highlight the need to understand the fundamental neural network dysfunction in SUDEP, which may fill the missing link between seizure-related cardiorespiratory dysfunction and SUDEP, and provide a promising neuroimaging biomarker for risk prediction of SUDEP.
A great number of studies have demonstrated functional abnormalities in children with attention-deficit/hyperactivity disorder (ADHD), although conflicting results have also been reported. And few studies analyzed homotopic functional connectivity between hemispheres. In this study, resting-state functional magnetic resonance imaging (MRI) data were recorded from 45 medication-naïve ADHD children and 26 healthy controls. The regional homogeneity (ReHo), degree centrality (DC) and voxel-mirrored homotopic connectivity (VMHC) values were compared between the two groups to depict the intrinsic brain activities. We found that ADHD children exhibited significantly lower ReHo and DC values in the right middle frontal gyrus and the two values correlated with each other; moreover, lower VMHC values were found in the bilateral occipital lobes of ADHD children, which was negatively related with anxiety scores of Conners' Parent Rating Scale (CPRS-R) and positively related with completed categories of Wisconsin Card Sorting Test (WCST). Our results might suggest that less spontaneous neuronal activities of the right middle frontal gyrus and the bilateral occipital lobes in ADHD children.
Myopia is a major problem of public health in China, and even in the world, and slowing down the progress of myopia has become a hot issue of concern. However, the effects of the current therapeutic and interventional modalities to myopia, including optical lenses, chemical drugs, and laser surgery, the effect of treatment and intervention is not very satisfactory, and these modalities may incur some side effects. This situation suggests that the pathogenic and regulatory mechanisms of myopia remain elusive, and the myopia treatments lack the accurate and effective targets to the etiology. A complete visual experience depends on the entire visual pathway from the retina to the visual cortex, in which any structural and functional defect can lead to visual abnormalities. In recent years, with the advances in the infrared spectroscopy and the magnetic resonance imaging technology, more and more evidence has shown that the progression of myopia is related to the visual cortex. Improving the functional connectivity and blood prefusion between different regions of the visual cortex may impede myopia profession. In-depth understanding of the interaction between myopia and the visual cortex is helpful to search for accurate and effective myopia treatment targets and novel intervention strategies.
Amblyopia is a visual development deficit caused by abnormal visual experience in early life, mainly manifesting as defected visual acuity and binocular visual impairment, which is considered to reflect abnormal development of the brain rather than organic lesions of the eye. Previous studies have reported abnormal spontaneous brain activity in patients with amblyopia. However, the location of abnormal spontaneous activity in patients with amblyopia and the association between abnormal brain function activity and clinical deficits remain unclear. The purpose of this study is to analyze spontaneous brain functional activity abnormalities in patients with amblyopia and their associations with clinical defects using resting-state functional magnetic resonance imaging (fMRI) data. In this study, 31 patients with amblyopia and 31 healthy controls were enrolled for resting-state fMRI scanning. The results showed that spontaneous activity in the right angular gyrus, left posterior cerebellum, and left cingulate gyrus were significantly lower in patients with amblyopia than in controls, and spontaneous activity in the right middle temporal gyrus was significantly higher in patients with amblyopia. In addition, the spontaneous activity of the left cerebellum in patients with amblyopia was negatively associated with the best-corrected visual acuity of the amblyopic eye, and the spontaneous activity of the right middle temporal gyrus was positively associated with the stereoacuity. This study found that adult patients with amblyopia showed abnormal spontaneous activity in the angular gyrus, cerebellum, middle temporal gyrus, and cingulate gyrus. Furthermore, the functional abnormalities in the cerebellum and middle temporal gyrus may be associated with visual acuity defects and stereopsis deficiency in patients with amblyopia. These findings help explain the neural mechanism of amblyopia, thus promoting the improvement of the treatment strategy for amblyopia.
Simultaneous recording of electroencephalogram (EEG)-functional magnetic resonance imaging (fMRI) plays an important role in scientific research and clinical field due to its high spatial and temporal resolution. However, the fusion results are seriously influenced by ballistocardiogram (BCG) artifacts under MRI environment. In this paper, we improve the off-line constrained independent components analysis using real-time technique (rt-cICA), which is applied to the simulated and real resting-state EEG data. The results show that for simulated data analysis, the value of error in signal amplitude (Er) obtained by rt-cICA method was obviously lower than the traditional methods such as average artifact subtraction (P<0.005). In real EEG data analysis, the improvement of normalized power spectrum (INPS) calculated by rt-cICA method was much higher than other methods (P<0.005). In conclusion, the novel method proposed by this paper lays the technical foundation for further research on the fusion model of EEG-fMRI.