Migraine is the most common primary headache clinically, with high disability rate and heavy burden. Functional MRI (fMRI) plays a significant role in the study of migraine. This article reviews the main advances of migraine without aura (MwoA) based on resting-state fMRI in recent years, including the exploration of the mechanism of fMRI in the occurrence and development of MwoA in terms of regional functional activities and functional network connections, as well as the research progress of the potential clinical application of fMRI in aiding diagnosis and assessing treatment effect for MwoA. At last, this article summarizes the current distresses and prospects of fMRI research on MwoA.
Although attention plays an important role in cognitive and perception, there is no simple way to measure one's attention abilities. We identified that the strength of brain functional network in sustained attention task can be used as the physiological indicator to predict behavioral performance. Behavioral and electroencephalogram (EEG) data from 14 subjects during three force control tasks were collected in this paper. The reciprocal of the product of force tolerance and variance were used to calculate the score of behavioral performance. EEG data were used to construct brain network connectivity by wavelet coherence method and then correlation analysis between each edge in connectivity matrices and behavioral score was performed. The linear regression model combined those with significantly correlated network connections into physiological indicator to predict participant's performance on three force control tasks, all of which had correlation coefficients greater than 0.7. These results indicate that brain functional network strength can provide a widely applicable biomarker for sustained attention tasks.
Transcranial direct current stimulation (tDCS) is an emerging non-invasive brain stimulation technique. However, the rehabilitation effect of tDCS on stroke disease is unclear. In this paper, based on electroencephalogram (EEG) and complex network analysis methods, the effect of tDCS on brain function network of stroke patients during rehabilitation was investigated. The resting state EEG signals of 31 stroke rehabilitation patients were collected and divided into stimulation group (16 cases) and control group (15 cases). The Pearson correlation coefficients were calculated between the channels, brain functional network of two groups were constructed before and after stimulation, and five characteristic parameters were analyzed and compared such as node degree, clustering coefficient, characteristic path length, global efficiency, and small world attribute. The results showed that node degree, clustering coefficient, global efficiency, and small world attributes of brain functional network in the tDCS group were significantly increased, characteristic path length was significantly reduced, and the difference was statistically significant (P < 0.05). It indicates that tDCS can improve the brain function network of stroke patients in rehabilitation period, and may provide theory and experimental basis for the application of tDCS in stroke rehabilitation treatment.
The measurement of network is one of the important researches in resolving neuronal population information processing mechanism using complex network theory. For the quantitative measurement problem of functional neural network, the relation between the measure indexes, i.e. the clustering coefficient, the global efficiency, the characteristic path length and the transitivity, and the network topology was analyzed. Then, the spike-based functional neural network was established and the simulation results showed that the measured network could represent the original neural connections among neurons. On the basis of the former work, the coding of functional neural network in nidopallium caudolaterale (NCL) about pigeon's motion behaviors was studied. We found that the NCL functional neural network effectively encoded the motion behaviors of the pigeon, and there were significant differences in four indexes among the left-turning, the forward and the right-turning. Overall, the establishment method of spike-based functional neural network is available and it is an effective tool to parse the brain information processing mechanism.
Electroconvulsive therapy (ECT) is an interventional technique capable of highly effective neuromodulation in major depressive disorder (MDD), but its antidepressant mechanism remains unclear. By recording the resting-state electroencephalogram (RS-EEG) of 19 MDD patients before and after ECT, we analyzed the modulation effect of ECT on the resting-state brain functional network of MDD patients from multiple perspectives: estimating spontaneous EEG activity power spectral density (PSD) using Welch algorithm; constructing brain functional network based on imaginary part coherence (iCoh) and calculate functional connectivity; using minimum spanning tree theory to explore the topological characteristics of brain functional network. The results show that PSD, functional connectivity, and topology in multiple frequency bands were significantly changed after ECT in MDD patients. The results of this study reveal that ECT changes the brain activity of MDD patients, which provides an important reference in the clinical treatment and mechanism analysis of MDD.
The aim of this study is to explore the effects of continuous theta-burst transcranial magnetic stimulation (cTBS) on functional brain network in emotion processing. Before and after the intervention of cTBS over left dorsolateral prefrontal cortex (DLPFC) of ten participants who were asked to perform the emotion gender recognition task, we recorded their scalp electroencephalograms (EEG). Then we used the phase synchronization of EEG to measure the connectivity between two nodes. We then calculated the network efficiency to describe the efficiency of information transmission in brain regions. Our research showed that after the intervention of cTBS and the stimulation of the emotion face picture, there was an obvious enhancement in the event-related spectral perturbation after stimuli onset in beta band in 100–300 ms. Under the stimulation of different emotion picture, the values of global phase synchronization for negative and neutral stimuli were enhanced compared to positive ones. And the increased small-worldness was found in emotional processing. In summary, based on the effect of activity change in the left DLPFC on emotion processing brain network, the emotional processing mechanism of brain networks were preliminary explored and it provided the reference for the research of emotion processing brain network in the future.
Analyzing the influence of mixed emotional factors on false memory through brain function network is helpful to further explore the nature of brain memory. In this study, Deese-Roediger-Mc-Dermott (DRM) paradigm electroencephalogram (EEG) experiment was designed with mixed emotional memory materials, and different kinds of music were used to induce positive, calm and negative emotions of three groups of subjects. For the obtained false memory EEG signals, standardized low resolution brain electromagnetic tomography algorithm (sLORETA) was applied in the source localization, and then the functional network of cerebral cortex was built and analyzed. The results show that the positive group has the most false memories [(83.3 ± 6.8)%], the prefrontal lobe and left temporal lobe are activated, and the degree of activation and the density of brain network are significantly larger than those of the calm group and the negative group. In the calm group, the posterior prefrontal lobe and temporal lobe are activated, and the collectivization degree and the information transmission rate of brain network are larger than those of the positive and negative groups. The negative group has the least false memories [(73.3 ± 2.2)%], and the prefrontal lobe and right temporal lobe are activated. The brain network is the sparsest in the negative group, the degree of centralization is significantly larger than that of the calm group, but the collectivization degree and the information transmission rate of brain network are smaller than the positive group. The results show that the brain is stimulated by positive emotions, so more brain resources are used to memorize and associate words, which increases false memory. The activity of the brain is inhibited by negative emotions, which hinders the brain’s memory and association of words and reduces false memory.
The construction of brain functional network based on resting-state functional magnetic resonance imaging (fMRI) is an effective method to reveal the mechanism of human brain operation, but the common brain functional network generally contains a lot of noise, which leads to wrong analysis results. In this paper, the least absolute shrinkage and selection operator (LASSO) model in compressed sensing is used to reconstruct the brain functional network. This model uses the sparsity of L1-norm penalty term to avoid over fitting problem. Then, it is solved by the fast iterative shrinkage-thresholding algorithm (FISTA), which updates the variables through a shrinkage threshold operation in each iteration to converge to the global optimal solution. The experimental results show that compared with other methods, this method can improve the accuracy of noise reduction and reconstruction of brain functional network to more than 98%, effectively suppress the noise, and help to better explore the function of human brain in noisy environment.
An in-depth understanding of the mechanism of lower extremity muscle coordination during walking is the key to improving the efficacy of gait rehabilitation in patients with neuromuscular dysfunction. This paper investigates the effect of changes in walking speed on lower extremity muscle synergy patterns and muscle functional networks. Eight healthy subjects were recruited to perform walking tasks on a treadmill at three different speeds, and the surface electromyographic signals (sEMG) of eight muscles of the right lower limb were collected synchronously. The non-negative matrix factorization (NNMF) method was used to extract muscle synergy patterns, the mutual information (MI) method was used to construct the alpha frequency band (8–13 Hz), beta frequency band (14–30 Hz) and gamma frequency band (31–60 Hz) muscle functional network, and complex network analysis methods were introduced to quantify the differences between different networks. Muscle synergy analysis extracted 5 muscle synergy patterns, and changes in walking speed did not change the number of muscle synergy, but resulted in changes in muscle weights. Muscle network analysis found that at the same speed, high-frequency bands have lower global efficiency and clustering coefficients. As walking speed increased, the strength of connections between local muscles also increased. The results show that there are different muscle synergy patterns and muscle function networks in different walking speeds. This study provides a new perspective for exploring the mechanism of muscle coordination at different walking speeds, and is expected to provide theoretical support for the evaluation of gait function in patients with neuromuscular dysfunction.