Wearable devices, as an important component of digital health, are gradually penetrating into the clinical nursing field. This paper explores the current applications of wearable devices in the field of clinical nursing, with a focus on their significant roles in real-time monitoring of physiological parameters, disease management, functional rehabilitation exercises. Additionally, it analyzes the challenges these devices face, such as the need for standardized development, data security and privacy protection, and cost-benefit analysis. This paper also proposes measures to address these challenges, including enhancing policy formulation, promoting standardization, and fostering technological innovation, with the aim of providing valuable insights for the advancement of high-quality clinical nursing practices.
Wearable monitoring, which has the advantages of continuous monitoring for a long time with low physiological and psychological load, represents a future development direction of monitoring technology. Based on wearable physiological monitoring technology, combined with Internet of Things (IoT) and artificial intelligence technology, this paper has developed an intelligent monitoring system, including wearable hardware, ward Internet of Things platform, continuous physiological data analysis algorithm and software. We explored the clinical value of continuous physiological data using this system through a lot of clinical practices. And four value points were given, namely, real-time monitoring, disease assessment, prediction and early warning, and rehabilitation training. Depending on the real clinical environment, we explored the mode of applying wearable technology in general ward monitoring, cardiopulmonary rehabilitation, and integrated monitoring inside and outside the hospital. The research results show that this monitoring system can be effectively used for monitoring of patients in hospital, evaluation and training of patients’ cardiopulmonary function, and management of patients outside hospital.
In order to improve the accuracy of blood pressure measurement in wearable devices, this paper presents a method for detecting blood pressure based on multiple parameters of pulse wave. Based on regression analysis between blood pressure and the characteristic parameters of pulse wave, such as the pulse wave transit time (PWTT), cardiac output, coefficient of pulse wave, the average slope of the ascending branch, heart rate, etc. we established a model to calculate blood pressure. For overcoming the application deficiencies caused by measuring ECG in wearable device, such as replacing electrodes and ECG lead sets which are not convenient, we calculated the PWTT with heart sound as reference (PWTTPCG). We experimentally verified the detection of blood pressure based on PWTTPCG and based on multiple parameters of pulse wave. The experiment results showed that it was feasible to calculate the PWTT from PWTTPCG. The mean measurement error of the systolic and diastolic blood pressure calculated by the model based on multiple parameters of pulse wave is 1.62 mm Hg and 1.12 mm Hg, increased by 57% and 53% compared to those of the model based on simple parameter. This method has more measurement accuracy.
Self-powered wearable piezoelectric sensing devices demand flexibility and high voltage electrical properties to meet personalized health and safety management needs. Aiming at the characteristics of piezoceramics with high piezoelectricity and low flexibility, this study designs a high-performance piezoelectric sensor based on multi-phase barium titanate (BTO) flexible piezoceramic film, namely multi-phase BTO sensor. The substrate-less self-supported multi-phase BTO films had excellent flexibility and could be bent 180° at a thickness of 33 μm, and exhibited good bending fatigue resistance in 1 × 104 bending cycles at a thickness of 5 μm. The prepared multi-phase BTO sensor could maintain good piezoelectric stability after 1.2 × 104 piezoelectric cycle tests. Based on the flexibility, high piezoelectricity, wearability, portability and battery-free self-powered characteristics of this sensor, the developed smart mask could monitor the respiratory signals of different frequencies and amplitudes in real time. In addition, by mounting the sensor on the hand or shoulder, different gestures and arm movements could also be detected. In summary, the multi-phase BTO sensor developed in this paper is expected to develop convenient and efficient wearable sensing devices for physiological health and behavioral activity monitoring applications.
Epilepsy is a complex and widespread neurological disorder that has become a global public health issue. In recent years, significant progress has been made in the use of wearable devices for seizure monitoring, prediction, and treatment. This paper reviewed the applications of invasive and non-invasive wearable devices in seizure monitoring, such as subcutaneous EEG, ear-EEG, and multimodal sensors, highlighting their advantages in improving the accuracy of seizure recording. It also discussed the latest advances in the prediction and treatment of seizure using wearable devices.
In order to address the problem of traditional dolphin adjuvant therapy such as high cost and its limitation in time and place, this paper introduces a three-dimensional virtual dolphin adjuvant therapy system based on virtual reality technology. By adopting Oculus wearable three-dimensional display, the system combined natural human-computer interaction based on Leap Motion with high-precision gesture recognition and cognitive training, and achieved immersive three-dimensional interactive game for child rehabilitation training purposes. The experimental data showed that the system can effectively improve the cognitive and social abilities of those children with autism spectrum disorder, providing a useful exploration for the rehabilitation of those children.
According to the development status of wearable technology and the demand of intelligent health monitoring, we studied the multi-function integrated smart watches solution and its key technology. First of all, the sensor technology with high integration density, Bluetooth low energy (BLE) and mobile communication technology were integrated and used in develop practice. Secondly, for the hardware design of the system in this paper, we chose the scheme with high integration density and cost-effective computer modules and chips. Thirdly, we used real-time operating system FreeRTOS to develop the friendly graphical interface interacting with touch screen. At last, the high-performance application software which connected with BLE hardware wirelessly and synchronized data was developed based on android system. The function of this system included real-time calendar clock, telephone message, address book management, step-counting, heart rate and sleep quality monitoring and so on. Experiments showed that the collecting data accuracy of various sensors, system data transmission capacity, the overall power consumption satisfy the production standard. Moreover, the system run stably with low power consumption, which could realize intelligent health monitoring effectively.
Patients with amyotrophic lateral sclerosis ( ALS ) often have difficulty in expressing their intentions through language and behavior, which prevents them from communicating properly with the outside world and seriously affects their quality of life. The brain-computer interface (BCI) has received much attention as an aid for ALS patients to communicate with the outside world, but the heavy device causes inconvenience to patients in the application process. To improve the portability of the BCI system, this paper proposed a wearable P300-speller brain-computer interface system based on the augmented reality (MR-BCI). This system used Hololens2 augmented reality device to present the paradigm, an OpenBCI device to capture EEG signals, and Jetson Nano embedded computer to process the data. Meanwhile, to optimize the system’s performance for character recognition, this paper proposed a convolutional neural network classification method with low computational complexity applied to the embedded system for real-time classification. The results showed that compared with the P300-speller brain-computer interface system based on the computer screen (CS-BCI), MR-BCI induced an increase in the amplitude of the P300 component, an increase in accuracy of 1.7% and 1.4% in offline and online experiments, respectively, and an increase in the information transfer rate of 0.7 bit/min. The MR-BCI proposed in this paper achieves a wearable BCI system based on guaranteed system performance. It has a positive effect on the realization of the clinical application of BCI.
Wearable devices bring us an innovative human-computer interaction which plays an irreplaceable role in enhancing the users’ ability in environmental awareness, acquirements of their own state and “ubiquitous” computing power. Since 2013, wearable devices have quickly appeared around us. In this article we classify most of the wearable devices which have been appeared in the markets or reported in the literature according to their functions and the positions where they are worn. Furthermore, we review the technologies related to wearable devices, such as sensing technology, wireless communication, power manager, display technology and big data. At last, we analyze the challenges which the wearable devices will face in near future, and look forward to development trends of wearable devices.