OBJECTIVE Following the delayed repair of peripheral nerve injury, the cell number of anterior horn of the spinal cord and its ultrastructural changes, motorneuron and its electrophysiological changes were investigated. METHODS In 16 rabbits the common peroneal nerves of both sides being transected one year later were divided into four groups randomly: the degeneration group and regeneration of 1, 3 and 5 months groups. Another 4 rabbits were used for control. All transected common peroneal nerves underwent epineural suture except for the degeneration group the electrophysiological examination was carried out at 1, 3 and 5 months postoperatively. Retrograde labelling of the anterior horn cells was demonstrated and the cells were observed under light and electronmicroscope. RESULTS 1. The number of labelled anterior horn cell in the spinal cord was 45% of the normal population after denervation for one year (P lt; 0.01). The number of labelled cells increased steadily from 48% to 57% and 68% of normal values at 1, 3 and 5 months following delayed nerve repair (P lt; 0.01). 2. The ultrastructure of the anterior horn cells of the recover gradually after repair. 3. With the progress of regeneration the latency become shortened, the conduction velocity was increased, the amplitude of action potential was increased. CONCLUSION Following delayed repair of injury of peripheral nerve, the morphology of anterior horn cells of spinal cord and electrophysiological display all revealed evidence of regeneration, thus the late repair of injury of peripheral nerve was valid.
Objective To explore effects of several immunosuppressants on cytokine expressions after repair for a sciatic nerve injury in a rat model. Methods The sciatic nerves of 42 rats were cut and suturedend to end. After operation, the rats were divided into 6 groups. Group A(n=9) was served as a control with no medicines given. Group B (n=9) was given methylprednisolone 20 mg/(kg·d) for 2 days. Groups C(n=9) and D(n=3) were given FK506 1 mg/(kg·d) for 2 weeks and 4 weeks respectively, and were given the same doses of methylprednisolone as Group B. Groups E and F were given CsA 2 mg/(kg·d) for 2 weeks and 4 weeks respectively, and were given the same doses of methylprednisolone as Group B. The sciaticnerves were sampled at 1, 2 and 4 weeks postoperatively. And immuneohistochemistry stainings of interleukin 1β(IL-1β), tumor necrosis factor α(TNF-α), interferon γ(IFN-γ) and macrophage migration inhibitory factor(MIF) were performed. The staining results were compared and analyzed. Results The expression peaks of IL-1β and IFN-γ were found at the 1st week postoperatively in Group A. Then, the expression decreased rapidly at the 2nd week and disappeared at the 4th week. As for TNF-α and MIF, they were only found to have a low expression until the 1st week in Group A. In groups C-F, the expression peaks of IL-1β, TNF-α and IFN-γ were found at the 2nd week, while the expression peak of MIF was still at the 1st week, and the expression of all the cytokines extended to the 4th week. The expressions of these cytokines in Group B were just between the expression levels of Group A and Groups C-F. Conclusion Immunosuppressants can delay the expression peaks and significantly extend the expression time of IL-1β, TNF-α, IFN-γ and MIF after repair for a sciatic nerve injury in a rat model.
OBJECTIVE: To investigate the protective effect of tumor necrosis factor-alpha(TNF-alpha) on spinal motor neurons after peripheral nerve injury. METHODS: Twenty Wistar rats were divided into two groups, the right sciatic nerves of 20 Wistar rats were transected, the proximal stumps were inserted into a single blind silicone tube. 16 microliters of normal saline(NS) and TNF-alpha(30 U/ml) were injected into the silicone tubes. After 2 weeks, the 4th, 5th lumbar spinal cord were taken for examination. Enzyme histochemical technique and image analysis were used to show acetylcholinesterase(AChE) and nitric oxide synthase(NOS) activity of spinal motor neurons. RESULTS: The number of AChE and NOS staining neurons were 8.65 +/- 1.98 and 5.92 +/- 1.36 in the experimental group and 6.37 +/- 1.42 and 8.67 +/- 1.45 in the control group respectively, there were significant difference between the two groups(P lt; 0.01). CONCLUSION: It suggests that TNF-alpha has protective effect on motor neurons after peripheral nerve injury.
ObjectiveTo investigate the effect of folic acid coated-crosslinked urethane-doped polyester elastomer (fCUPE) nerve conduit in repairing long distance peripheral nerve injury. MethodsThirty-six 3-month-old male Sprague Dawley rats weighing 180-220 g were randomly assigned to 3 groups, each consisting of 12 rats: CUPE nerve conduit transplantation group (group A), fCUPE nerve conduit transplantation group (group B), and autologous nerve transplantation group (group C), the contralateral healthy limb of group C served as the control group (group D). A 20-mm-long sciatic nerve defect model was established in rats, and corresponding materials were used to repair the nerve defect according to the group. The sciatic function index (SFI) of groups A-C was calculated using the Bain formula at 1, 2, and 3 months after operation. The nerve conduction velocity (NCV) of the affected side in groups A-D was assessed using neuroelectrophysiological techniques. At 3 months after operation, the regenerated nerve tissue was collected from groups A-C for S-100 immunohistochemical staining and Schwann cell count in groups A and B to compare the level of nerve repair and regeneration in each group. ResultsAt 3 months after operation, the nerve conduits in all groups partially degraded. There was no significant adhesion between the nerve and the conduit and the surrounding tissues, the conduit was well connected with the distal and proximal nerves, and the nerve-like tissues in the conduit could be observed when the nerve conduit stents were cut off. SFI in group A was significantly higher than that in group C at each time point after operation and was significantly higher than that in group B at 2 and 3 months after operation (P<0.05). There was no significant difference in SFI between groups B and C at each time point after operation (P>0.05). NCV in group A was significantly slower than that in the other 3 groups at each time point after operation (P<0.05). The NCV of groups B and C were slower than that of group D, but the difference was significant only at 1 month after operation (P<0.05). There was no significant difference between groups B and C at each time point after operation (P>0.05). Immunohistochemical staining showed that the nerve tissue of group A had an abnormal cavo-like structure, light tissue staining, and many non-Schwann cells. In group B, a large quantity of normal neural structures was observed, the staining was deeper than that in group A, and the distribution of dedifferentiated Schwann cells was obvious. In group C, the nerve bundles were arranged neatly, and the tissue staining was the deepest. The number of Schwann cells in group B was (727.50±57.60) cells/mm2, which was significantly more than that in group A [(298.33±153.12) cells/mm2] (t=6.139, P<0.001). ConclusionThe fCUPE nerve conduit is effective in repairing long-distance sciatic nerve defects and is comparable to autologous nerve grafts. It has the potential to be used as a substitute material for peripheral nerve defect transplantation.
Objective To study the functional change of nerve trunk after removing the partial bundles of ulnar nerve, to propose the concept of functional reserve of peripheral nerves and to investigate the functional reserve quantity of peripheral nerves. Methods Two hundred and twenty SD rats (male or female), aging 3 months and weighing 300-350 g, were randomized into the experimental group and the control group (n=110 per group). And the experimental group wassubdivided into group 1/8, group 1/4, group 1/3, group 1/2 and group 2/3 according to the resection portion (n=22 per group). In the experimental group, the section of the lowest level on ulnar nerve trunks was exposed, and a certain portion of its bundles was separated and cut, while in the control group the bundles were only separated without resection. The general condition of all rats was observed, and the motoneurons in cornu anterius medullae spinal is were detected at 1 week, 2 weeks and 2 months after operation. The neuro-electrophysiology and the function of dominated muscles were detected at 2 weeks, 2 months, 3 months, and 4 months after operation. Results All the rats survived without infection and obvious ulcer in the l imbs. The number of motoneurons in cornu anterius medullae spinal is in various experimental subgroups witnessed no obvious changes (P gt; 0.05). The superstructure changed obviously at the early postoperative stage in group 1/2 and group 2/3, but restored well at 2 months after operation. For the latent period of evoked potential, there was no significant difference between the various experimental subgroups and the control group at each time point (P gt; 0.05), but there was a significant difference among the various experimental subgroups when compared the time points of 2, 3 and 4 months to that of 2 weeks (P lt; 0.05) and no statistically significant difference at other time points (P gt; 0.05). For the wave ampl itude of evoked potential of motor nerves, the maximum wave ampl itude and the persistence time of the dominate muscle, there were significant differences between the various experimental subgroups and the control group at each time point (P lt; 0.05), and there were significant differences among the various experimental subgroups when comparing the time points of 2, 3 and 4 months to that of 2 weeks (P lt; 0.05) and no statistical significance at other time points (Pgt; 0.05). Conclusion The functional reserve of the ulnar nerve withoutcompromise accounts the 1/3 of the whole trunk diameter.
ObjectiveTo investigate the effects of exosomes from adipose-derived stem cells (ADSCs) on peripheral nerve regeneration, and to find a new treatment for peripheral nerve injury. MethodsThirty-six adult Sprague Dawley (SD) rats (male or female, weighing 220-240 g) were randomly divided into 3 groups (n=12). Group A was the control group; group B was sciatic nerve injury group; group C was sciatic nerve injury combined with exosomes from ADSCs treatment group. The sciatic nerve was only exposed without injury in group A, and the sciatic nerve crush injury model was prepared in groups B and C. The SD rats in groups A and B were injected with PBS solution of 200 μL via tail veins; the SD rats in group C were injected with pure PBS solution of 200 μL containing 100 μg exosomes from ADSCs, once a week and injected for 12 weeks. At 1 week after the end of the injection, the rats were killed and the sciatic nerves were taken at the part of injury. The sciatic nerve fiber bundles were observed by HE staining; the SCs apoptosis of the sciatic nerve tissue were detected by TUNEL staining; the ultrastructure and SCs autophagy of the sciatic nerve were observed by transmission electron microscope. ResultsGross observation showed that there was no obvious abnormality in the injured limbs of group A, but there were the injured limbs paralysis and muscle atrophy in groups B and C, and the degree of paralysis and muscle atrophy in group C were lighter than those in group B. HE staining showed that the perineurium of group A was regular; the perineurium of group B was irregular, and there were a lot of cell-free structures and tissue fragments in group B; the perineurium of group C was more complete, and significantly well than that of group B. TUNEL staining showed that the SCs apoptosis was significantly increased in groups B and C than in group A, in group B than in group C (P<0.01). Transmission electron microscope observation showed that the SCs autophagosomes in groups B and C were significantly increased than those in group A, but the autophagosomes in group C were significantly lower than those in group B. ConclusionThe exosomes from ADSCs can promote the peripheral nerve regeneration. The mechanism may be related to reducing SCs apoptosis, inhibiting SCs autophagy, and reducing nerve Wallerian degeneration.
Objective To review researches of treatment of peripheral nerve injury with neuromuscular electrical stimulation (NMES) regarding mechanism, parameters, and cl inical appl ication at home and abroad. Methods The latest original l iterature concerning treatment of peri pheral nerve injury with NMES was extensively reviewed. Results NMES should be used under individual parameters and proper mode of stimulation at early stage of injury. It could promote nerve regeneration and prevent muscle atrophy. Conclusion NMES plays an important role in cl inical appl ication of treating peripheral nerve injury, and implantable stimulation will be the future.
OBJECTIVE: To observe the functional rehabilitation of injured peripheral nerve with electric acupuncture. METHODS: Sciatic nerve injury model was established by transection of left sciatic nerve in 60 Wistar rats, which were randomly divided into two groups. The experimental group was treated with electroacupuncture, no treatment in the control group. Change of nerve electrophysiological, power of muscle and sciatic functional index (SFI) were observed. RESULTS: Nerve muscle-action potential (MAP) and motor nerve conduction velocity (MNCV) in the experimental group were better than that of the control group (P lt; 0.01). The single muscle twitch and tetanization of gastrocnemius muscle were higher in the experimental group too (P lt; 0.05). SFI were significantly higher in the experimental group (P lt; 0.05). CONCLUSION: Electric acupuncture therapy can improve functional rehabilitation of injured peripheral nerve.