west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "增生性瘢痕" 27 results
  • STUDY OF THE EXPRESSION OF HEAT SHOCK PROTEIN 47 AND ITS CORRELATION TO COLLAGEN DEPOSITION IN PATHOLOGICAL SCAR TISSUES

    Objective To study the expression of heat shock protein 47 (HSP47) and its correlation to collagen deposition in pathological scar tissues. Methods The tissues of normal skin(10 cases), hypertrophic scar(19 cases), and keloid(16 cases) were obtained. The expression ofHSP47 was detected by immunohistochemistry method. The collagen fiber content was detected by Sirius red staining and polarization microscopy method. Results Compared with normal skin tissues(Mean IOD 13 050.17±4 789.41), the expression of HSP47 in hypertrophic scar(Mean IOD -521 159.50±272994.13) and keloid tissues(Mean IOD 407 440.30±295 780.63) was significantly high(Plt;0.01). And there was a direct correlation between the expression of HSP47 and the total collagen fiber content(r=0.386,Plt;0.05). Conclusion The HSP47 is highly expressed in pathological scartissues and it may play an important role in the collagen deposition of pathological scar tissues.

    Release date:2016-09-01 09:27 Export PDF Favorites Scan
  • EXPRESSION OF CONNECTIVE TISSUE GROWTH FACTOR GENE IN THE HYPERTROPHIC SCAR AND KELOID TISSUE

    Objective To explore the effect of connective tissue growth factor on the pathogenesis of hypertrophic scar and keloid tissue. Methods The content of hydroxyproline was determined and the expression of connective tissue growth factor gene was detected by the reverse transcription-polymerase chain reaction and image analysis technique in 5 normal skins, 15 hypertrophic scars and 7 keloid tissues. Results The contents of hydroxyproline in the hypertrophic scar(84.10±1.76) and keloid tissue (92.38±2.04) were significantly higher than that of normal skin tissue (26.52 ± 4.10) (P lt; 0.01). The index of connective tissue growth factor mRNA in the hypertrophic scar (0.78 ± 0.63) and keloid tissue (0.84 ± 0.04) were higher than that of normal skin tissue ( 0.09 ± 0.25) (P lt; 0.01). Conclusion Connective tissue growth factor may play an important role in promoting the fibrotic process of hypertrophic scar and keloid tissue.

    Release date:2016-09-01 09:35 Export PDF Favorites Scan
  • DIFFERENT EXPRESSION OF CHAPERONE INTERACTING PROTEIN IN NORMAL,SCAR AND CHRONIC ULCER TISSUES AND ITS RELATIONSHIP WITH WOUND HEALING

    Objective To explore the expression characteristics of chaperone interacting protein (CHIP) in normal, scar and chronic ulcer tissues and its relationship with wound healing. Methods Twenty biopsies including scar tissues(n=8), chronic ulcer tissues(n=4) and normal tissues(n=8)were used in this study. The immunohistochemical staining (power visionTMtwo-step histostaining reagent) was used to explore the amount and expression characteristics of such protein.Results The positive expression of CHIP was observed in fibroblasts, endothelial cells and epidermal cells in dermis and epidermis. It was not seen ininflammatory cells. The expression amount of CHIP in scar tissues, chronic ulcer tissues and normal tissues was 89%, 83% and 17% respectively. Conclusion Although the function of CHIP is not fully understood at present, the fact that this protein is expressed only at the mitogenic cells indicates that it may be involved in mitogenic regulation during wound healing.

    Release date:2016-09-01 09:29 Export PDF Favorites Scan
  • REACTION OF HUMAN FIBROBLASTS FROM DIFFERENT SITES TO THE MECHANICAL STRESS

    ObjectiveTo explore the reaction of normal skin fibroblasts from different sites of human body to cyclic stretch. MethodsThe normal skin tissues from scapular upper back and medial side of upper arm of 3 patients were cultured in vitro. Fibroblasts of experimental group were loaded by cyclic stretch with 10% amplitude for 24, 36, and 48 hours respectively. Fibroblasts of control group were cultured without cyclic stretch. The morphologic changes were observed using inverted microscope. CCK-8 method was used to detect the proliferation of the fibroblasts. The expressions of integrin β1 mRNA, p130Crk-associated substance (P130Cas) mRNA, transform growth factor β1 (TGF-β1) mRNA, and collagen type Ⅰ α1 chain (COL1A1) mRNA were detected by real-time quantitative PCR. The protein levels of collagen type Ⅰ and TGF-β1 were detected by ELISA. ResultsThe cultured cells showed a significantly increased cell proliferation ability, and apparent orientation after the applied strain. The proliferation activity, mRNA expression levels of integrin β1, P130Cas, and TGF-β1, protein levels of TGF-β1 in back skin were significantly higher than those in arm skin (P<0.05) when the fibroblasts were loaded for 36 and 48 hours, but no significant difference between back skin and arm skin at 24 hours (P>0.05). There was no significant difference in mRNA expression level of COL1A1 and protein level of collagen type Ⅰ between back skin and arm skin at 24, 36, and 48 hours (P>0.05). There was no significant difference in all above indexes between back skin and arm skin in control group (P>0.05). ConclusionFibroblasts from scapular upper back and medial side of upper arm display different reactions to cyclic stretch, which indicates that there exists site difference in the reactions of fibroblasts to cyclic stretch. It might be related with the incidence of hypertrophic scar in different sites of the body.

    Release date: Export PDF Favorites Scan
  • GENE EXPRESSION OF STRESS ACTIVATED PROTEIN KINASE AND ITS MAPKS IN HYPERTROPHIC SCAR

    Objective To explore the change of gene expression of stress activated protein kinase (SAPK) and its upstream signalregulated molecule ——mitogen activated protein kinases(MAPKs) (MKK4 and MKK7) in hypertrophic scar and autocontrol normal skin. Methods The total RNA was isolated from 8 hypertrophic scars and 8 auto-control skin, and then mRNA was purified. The gene expressions of MKK4, MKK7 and SAPK were examined with reverse transcriptionpolymerase chain reaction(RT-PCR) method. Results In hypertrophic scar, both MKK7 and SAPK genes weakly expressed. In auto-control skin, the expression of these 2 genes was significantly elevated in comparison with hypertrophic scar (Plt;0.01). The expression levelsof these 2 genes were 1.5 times and 2.6 times as long as those of hypertrophic scar, respectively. Gene expression of MKK4 had no significant difference between autocontrol skin and hypertrophic scar (Pgt;0.05). Conclusion Decreased gene expression of MKK7 and SAPK which results in reducing cell apoptosis might be one of the mechanisms for controlling the formation of hypertrophic scar.

    Release date: Export PDF Favorites Scan
  • THE ROLE OF MYOFIBROBLAST IN THE DEVELOPMENT OF PATHOLOGICAL SCAR

    Objective To study the effect of myofibroblast on the development of pathological scar. Methods From 1998 to 2000, 14 cases of keloid(k), 13 cases of hypertrophic scar(HS), and 7 cases of scar were studied through immunohistochemistry and electronical microscope. Results Myofibroblasts were often observed in the hypertrophic HS by electronical microscope, but no myofibroblast was observed in the K and NS. αSMactin was expressed in fibroblast of HS, but was not expressed in K and NS. Conclusion Myofibroblast may play a role in the development of hypertrophic scar. The difference between the absence of myofibroblast in keloid and the invasion of keloid deserves further study.

    Release date:2016-09-01 09:27 Export PDF Favorites Scan
  • CHARACTERISTICS OF bFGF AND TGF-β EXPRESSION IN DERMAL CHRONIC ULCERS AND HYPERTROPHIC SCARS AND THEIR EFFECTS ON TISSUE REPAIR

    OBJECTIVE: To localize the distribution of basic fibroblast growth factor (bFGF) and transforming growth factor-beta(TGF-beta) in tissues from dermal chronic ulcer and hypertrophic scar and to explore their effects on tissue repair. METHODS: Twenty-one cases were detected to localize the distribution of bFGF and TGF-beta, among them, there were 8 cases with dermal chronic ulcers, 8 cases with hypertrophic scars, and 5 cases of normal skin. RESULTS: Positive signal of bFGF and TGF-beta could be found in normal skin, mainly in the keratinocytes. In dermal chronic ulcers, positive signal of bFGF and TGF-beta could be found in granulation tissues. bFGF was localized mainly in fibroblasts cells and endothelial cells and TGF-beta mainly in inflammatory cells. In hypertrophic scar, the localization and signal density of bFGF was similar with those in granulation tissues, but the staining of TGF-beta was negative. CONCLUSION: The different distribution of bFGF and TGF-beta in dermal chronic ulcer and hypertrophic scar may be the reason of different results of tissue repair. The pathogenesis of wound healing delay in a condition of high concentration of growth factors may come from the binding disorder of growth factors and their receptors. bFGF may be involved in all process of formation of hypertrophic scar, but TGF-beta may only play roles in the early stage.

    Release date:2016-09-01 10:27 Export PDF Favorites Scan
  • EFFECTS OF ASIATICOSIDE ON CELL PROLIFERATION AND SMAD SIGNAL PATHWAYOF HYPERTROPHIC SCAR FIBROBLASTS

    Objective To investigate the effects of asiaticoside onthe proliferation and the Smad signal pathway of the hypertrophic scar fibroblasts.Methods The hypertrophic scar fibroblasts were cultured with tissue culture method. The expressions of Smad2 and Smad7 mRNA after asiaticoside treatment were determined by reverse transcriptionpolymerase chain reaction 48 hours later. Thecell cycle, the cell proliferation, the cell apoptosis and the expression of phosphorylated Smad2 and Smad7 with(experimental group) or without(control group) asiaticoside were detected with flow cytometry, immunocytochemistry and Western blot. Results Asiaticoside inhibited the hypertrophic scar fibroblasts from phase S to phase M. The Smad7 content and the expression of Smad7 mRNA were (1.33±1.26)% and (50.80±22.40)% in experimental group, and (9.15±3.36)% and (32.18±17.84)% in control group; there were significant differences between two groups (P<0.05). While the content and the mRNA expression of Smad2 had no significant difference between two groups. Conclusion Asiaticoside inhibits the scar formation through Smad signal pathway.

    Release date:2016-09-01 09:33 Export PDF Favorites Scan
  • EXPRESSION OF α-SMOOTH MUSCLE ACTIN IN SCAR FIBROBLASTS IN VITRO

    OBJECTIVE: To explore the expression of alpha-smooth muscle actin (alpha-SMA) induced by transforming growth factor beta 1 (TGF-beta 1). METHODS: Five samples of hypertrophic scars and three samples of normal mature scars were collected as the experimental and control groups respectively. The fibroblasts were isolated from scars, and cultured in 2-dimension or 3-dimension culture system. The immunohistochemical staining method of LSAB were used to investigate the expression of alpha-SMA in fibroblasts in the different concentration of TGF-beta 1. RESULTS: The expression of alpha-SMA in 3-dimension culture system were markedly lower than those in 2-dimension culture system with respect to the fibroblasts in the experimental group. The expression of alpha-SMA in fibroblasts were different in response to various TGF-beta 1 concentration, it was more effective at the concentration of 5 ng/ml. The expression of alpha-SMA in the fibroblasts from hypertrophic scars seemed to be more sensitive to TGF-beta 1 compared to that of the normal mature scars. CONCLUSION: There are concentration-dependent in the expression of alpha-SMA induced by TGF-beta 1 in scar fibroblasts in vitro. The biological characteristics of the fibroblasts from hypertrophic scars and normal mature scars and their sensitivity to the inducement of TGF-beta 1 were different. The inducement of TGF-beta 1 may be depressed by extracellular matrix components and that may decrease the expression of alpha-SMA.

    Release date:2016-09-01 10:21 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON ARTESUNATE INDUCING APOPTOSIS OF HYPERTROPHIC SCAR FIBROBLASTS

    Objective To study the effect and mechanism of the apoptosis of hypertrophic scar fibroblasts (HSF) induced by artesunate(Art). Methods HSFs were isolated and cultured from human earlobe scars by the tissue adherence method. The 3th to 5th generation cells were harvested and divided into two groups. HSF was cultured with normal medium in control group and with medium containing60, 120 and 240 mg/L (5 ml)Art in experimental group. Apoptosis and cell cycle were identified by light microscopy, electronmicroscopy and flow cytometry. Then, HSF was cultured with normal medium in control group and with medium containing 30, 60 and 120 mg/L Art in experimental group. The changes of intracellular calcium concentration were observed. Results The primary HSF was fusiform in shape and adherent. The vimentin positive expression was analyzed by immunocytochemistry. Art could induce apoptosis of HSF in the range of 60-240 mg/L under inverted microscope. The effect was dose and timedependent. Clumping of nuclear chromatin showed margination in the experimentalgroup. And the disaggregation of the nucleolus were observed under electronmicroscopy. There were significant differences in the proportion of HSF apoptosis and HSF at G0-G1,S, G2-M stages between the two groups(P<0.05). Apoptotic peak was shown in experimental group by flow cytometry. The peak became more evident asArt concentration increased. The intracellular calcium concentration elevated markedly in HSF with 30-120 mg/L Art treatment for 24 hours, showing significant differences between the two groups (P<0.05). Conclusion The Art facilitates HSF cells apoptosis in vitro by the change of cell cycle. It is suggested that intracellular calcium variation may be one of the mechanisms of HSF apoptosis induced by Art.

    Release date:2016-09-01 09:23 Export PDF Favorites Scan
3 pages Previous 1 2 3 Next

Format

Content