At present the parkinsonian rigidity assessment depends on subjective judgment of neurologists according to their experience. This study presents a parkinsonian rigidity quantification system based on the electromechanical driving device and mechanical impedance measurement method. The quantification system applies the electromechanical driving device to perform the rigidity clinical assessment tasks (flexion-extension movements) in Parkinson’s disease (PD) patients, which captures their motion and biomechanical information synchronously. Qualified rigidity features were obtained through statistical analysis method such as least-squares parameter estimation. By comparing the judgments from both the parkinsonian rigidity quantification system and neurologists, correlation analysis was performed to find the optimal quantitative feature. Clinical experiments showed that the mechanical impedance has the best correlation (Pearson correlation coefficient r = 0.872, P < 0.001) with the clinical unified Parkinson’s disease rating scale (UPDRS) rigidity score. Results confirmed that this measurement system is capable of quantifying parkinsonian rigidity with advantages of simple operation and effective assessment. In addition, the mechanical impedance can be adopted to help doctors to diagnose and monitor parkinsonian rigidity objectively and accurately.
ObjectiveTo conduct a bioinformatics analysis of gene expression profiles in frontal lobe of patients with Parkinson disease (PD), in order to explore the potential mechanism related to depression in PD.MethodsAll the bioinformatics data before March 20th 2019 were acquired from Gene Expression Omnibus (GEO) database, using " Parkinson disease” as the key word. The species was limited to human (Homo sapiens), and the detective method was limited to expression profiling by array. ImgGEO (Integrative Gene Expression Meta-Analysis from GEO database), DAVID (the Database for Annotation, Visualization and Integrated Discovery), STRING and Cytoscape 3.6.1 software were utilized for data analysis.ResultsTotally, 45 samples (24 PD cases and 21 healthy controls) were obtained from 2 datasets. We identified 236 differentially expressed genes (DEGs) in the post-mortem frontal lobe between PD cases and healthy controls, in which 146 genes were up-regulated and 90 genes were down-regulated. Based on Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis, the DEGs were mainly enriched in the structures of postsynaptic membrane, cell membrane component, postsynaptic membrane dense area, and myelin sheath, and were involved in the occurrence of PD, depression, and other diseases. These genes were involved in the biological processes of dopaminergic, glutamate-nergic, GABA-nergic synapses, and some other synapses, as well as several signaling pathways (e.g. mitogen- activated protein kinase signal pathway, p53 signal pathway, and Wnt signal pathway), which were associated with PD and depression pathogenesis. Besides, we found that NFKBIA, NRXN1, and RPL35A were the Hub proteins.ConclusionsGene expression in frontal lobe of patients with PD is associated with the pathogenesis of PD. This study provides a theoretical basis for understanding the mechanism of PD occurrence and progression, as well as the potential mechanism of depression in PD.
1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (Sal) is a kind of catechol isoquinoline compound, which mainly exists in mammalian brain and performs a variety of biological functions. Through in vivo metabolism, Sal can be transformed into endogenous neurotoxins and can participate the occurrence of Parkinson’s disease (PD). This has attracted widespread concern of researchers. Recently, many research works have shown that Sal may lead to alcohol addiction and regulate hormone release of the neuroendocrine system, which indicated that it is a potential regulator of dopaminergic neurons. In this paper, we discuss the neural functions of Sal on the above aspects, and wish to provide some theoretical supports for further research on its mechanism.
Age is the main cause of neurodegenerative changes in the central nervous system (CNS), and the loss of neurons would increase with the migration of the disease. The current treatment is also mainly used to relieve symptoms, while the function of CNS is very difficult to recover. The emergence of endogenous stem cells has brought new hope for the treatment of CNS diseases. However, this nerve regeneration is only in some specific areas, and the recovery of neural function remains unknown. More and more experts in the field of neuroscience have carried out various in vivo or in vitro experiments, in order to increase nerve regeneration and nerve function recovery through mechanism research, in the expectation that the results would be applied to the treatment of CNS diseases. This article reviews the recent progress of endogenous neural stem cells in degenerative diseases of CNS.
ObjectiveTo observe the macular retinal thickness and volume in patients with different degrees of Parkinson's disease (PD).MethodsThirty eyes of 30 patients with primary PD and 20 eyes of 20 healthy subjects (control group) in Xuanwu Hospital of Capital Medical University from October 2016 to October 2017 were enrolled in this study. There were 17 males and 13 females, with the mean age of 63.2±6.4 years and disease course of 3.9±2.4 years. The patients were divided into mild to moderate PD group (15 eyes of 15 patients) and severe PD group (15 eyes of 15 patients). The macular area was automatically divided into 3 concentric circles by software, which were foveal area with a diameter of 1 mm (inner ring), middle ring of 1 to 3 mm, and outer ring of 3 to 6 mm. The middle and outer ring were divided into 4 quadrants by 2 radiations, respectively. The changes of retinal thickness and macular volume of the macular center and its surrounding quadrants were analyzed. SPSS 16.0 software was used for statistical analysis. One-way ANOVA were used to analyze all data.ResultsCompared with the control group, the retinal thickness and volume in macular center and each quadrant of the mild to moderate PD group and severe PD group were reduced. Compared with the mild to moderate PD group, the retinal thickness and volume in macular center and each quadrant of the severe PD group were reduced. The differences of retinal thickness and macular volume among 3 groups were significant (F=5.794, 5.221, 5.586, 5.302, 5.926, 5.319, 5.404, 5.261, 5.603; P=0.001, 0.007, 0.003, 0.005, 0.000, 0.004, 0.004, 0.006, 0.002). In inner ring of the mild to moderate PD group and the severe PD group, the retinal thickness and macular volume in the upper and the nasal were the largest, the inferior was followed, and the temporal was the smallest. In outer ring of the mild to moderate PD group and the severe PD group, the retinal thickness and macular volume in the nasal was the largest, the upper was the second, the temporal and the inferior were the smallest.ConclusionsThe retinal thickness and volume of the macular central fovea and its surrounding areas in PD patients are significantly thinner than that in the healthy subjects. And with the increase of the severity of PD, the macular structure changes obviously, showing macular center and its surrounding macular degeneration thin, macular volume reduced.
Patients with early Parkinson's disease should be treated rationally in order to improve their quality of life and reduce the motor complications. The early employment of drugs which provides sustained central dopamine agonism and dopaminergic neuroprotection may reach this aim to some extent. Evidence of effective therapy in early Parkinson's disease will be introduced including: dopamine agonists, monoamine oxidase inhibitor 13, coenzymeQ10, L-dopa and a gait training.
Finger tapping test is a common testing item for patients with Parkinson's disease (PD) in clinical neurology. It mainly evaluates the fine motor function of patient's hand in three aspects:amplitude, speed and regularity of the movement. This paper focused on the quantitative assessment of regularity of finger tapping movement for PD patients. The movement signals of thumb and index finger were recorded by using inertial sensor unit in the process of tapping test. Two nonlinear dynamic indexes, approximate entropy (ApEn) and sample entropy (SampEn), were calculated, and then the values were statistically analyzed. The experimental results indicated that both indexes had significant differences between patient group and control group. Moreover, the indexes had relatively high correlation with the scores of corresponding unified Parkinson's disease rating scale (UPDRS) item rated by clinical clinician, which illustrated that these two indexes could reflect the injury level of the repetitive finger movement. So, as a reliable method, it can be provided to the clinical evaluation of hand movement function for PD patients.
ObjectiveTo summarize and evaluate the quality of methodology, report and evidence of the systematic reviews and meta-analyses (SRs/MAs) of acupuncture and moxibustion interventions for Parkinson's disease. MethodsEight databases including CNKI, WanFang Data, VIP, CBM, PubMed, EMbase, Cochrane Library and Web of Science were searched from inception to May 1, 2023. The quality of methodology, report and evidence involved in these studies were evaluated by AMSTAR 2, PRISMA and GRADE tool. ResultsA total of 28 SRs/MAs were included, and the findings of included studies showed that acupuncture and moxibustion had a clinical advantage for Parkinson's disease. The methodological quality of all studies was extremely low. Thirteen reports were relatively complete, 14 reports had certain flaws, and 1 report had relatively serious flaws. And of the 126 reports for seven outcomes, 1 was graded as high, 12 as moderate, 57 as low, and 56 as critically low. ConclusionThe current evidence shows that acupuncture and moxibustion have a certain clinical effect for Parkinson's disease, but the methodological quality and evidence quality of related SRs/MAs are low, and the standardization still needs to be improved. The efficacy of acupuncture and moxibustion in Parkinson's disease still needs to be verified by high-quality clinical studies in the future.
Parkinson's disease (PD) diagnosis based on speech data has been proved to be an effective way in recent years. There are still some problems on preprocessing samples, ensemble learning, and so on. The problems can further cause misleading of classifiers, unsatisfactory classification accuracy and stability. This paper proposed a new diagnosis algorithm of PD by combining multi-edit sample selection method and random forest. At the end of it, this paper presents a group of experiments carried out with the newest public datasets. Experimental results showed that this proposed algorithm realized the classification of the samples and the subjects of PD. Furthermore, it achieved average classification accuracy of 100% and obtained improvement of up to 29.44% compared to those provided by the subjects. This paper proposes a new speech diagnosis algorithm for PD based on instance selection; and the method algorithm has a higher and more stable classification accuracy, compared with the other algorithms.