Objective To explore the effect of age and gene therapyon the differentiation of marrow mesenchymal stem cells (MSCs) of the rats. Methods MSCs from the young (1-month-old), adult (9-month-old), and the aged(24monthold) rats were expanded in culture and infected with adenovirus mediated human bone morphogenetic protein 2 gene (Ad-BMP-2). The expression of BMP-2 and osteoblastic markers such as alkaline phosphatase(ALP), collagen Ⅰ(Col Ⅰ), bone sialoprotein(BSP) and osteopontin(OPN) were assayed during the process of differentiation. Their abilities to induce ectopic bone formation in nude mice were also tested. Results There was no significant difference in the expression of BMP-2 among the 3 groups. ALP activity assay and semi-quantitative reverse transcription polymerase chain reaction(RT-PCR) demonstrated that there were no significant differences in the expression of osteoblastic markers ALP, Col-Ⅰ, OPN and BSP amongthe 3 groups. Histomorphometric analysis indicated that there were no significant differences in the volume of the newly formed ectopic bones in nude mice amongthe 3 groups. Conclusion MSCs obtained from the aged ratscan restore their osteogenic activity following human BMP-2 gene transduction, therefore provides an alternative to treating the aged bone disease.
Lung cancers are highly heterogeneous and resistant to available therapeutic agents, with a five-year survival rate of less than 15%. Despite significant advances in our knowledge of the genetic alterations and aberrations in lung cancer, it has been difficult to determine the basis of lung cancer's heterogeneity and drug resistance. Cancer stem cell model has attracted a significant amount of attention in recent years as a viable explanation for the heterogeneity, drug resistance, dormancy, recurrence and metastasis of various tumors. At the same time, cancer stem cells have been relatively less characterized in lung cancers. This review summarizes the current understanding of lung cancer stem cells, including their molecular features and signaling pathways that drive their stemness. This review also discusses the prognosis of lung cancer and its relationship with lung cancer stem cell, in an effort to eradicate these cells to combat lung cancer.
Objective To explore the effect of the platelet-rich plasma (PRP) on proliferation and osteogenic differentiation of the bone marrow mesenchymal stem cells (MSCs) in China goat in vitro. Methods MSCs from the bone marrow of China goat were cultured. The third passage of MSCs were treated with PRP in the PRP group (the experimental group), but the cells were cultured with only the fetal calf serum (FCS) in the FCS group (the control group). The morphology and proliferation of the cells were observed by an inverted phase contrast microscope. The effect of PRP on proliferation of MSCs was examined by the MTT assay at 2,4,6 and 8 days. Furthermore, MSCs were cultured withdexamethasone(DEX)or PRP; alkaline phosphatase (ALP) and the calcium stainingwere used to evaluate the effect of DEX or PRP on osteogenic differatiation of MSCs at 18 days. The results from the PRP group were compared with those from the FCS group. Results The time for the MSCs confluence in the PRP group was earlier than that in the FCS group when observed under the inverted phase contrast microscope. The MTT assay showed that at 2, 4, 6 and 8 days the mean absorbance values were 0.252±0.026, 0.747±0.042, 1.173±0.067, and 1.242±0.056 in the PRP group, but 0.137±0.019, 0.436±0.052, 0.939±0.036, and 1.105±0.070 in the FCS group. The mean absorbance value was significantly higher in the PRP group than in the FCS group at each observation time (P<0.01). Compared with the FCS group, the positive-ALP cells and the calcium deposition were decreased in the PRP group; however, DEX could increase boththe number of the positiveALP cells and the calcium deposition. Conclusion The PRP can promote proliferation of the MSCs of China goats in vitro but inhibit osteogenic differentiation.
OBJECTIVE: To isolate and characterize mesenchymal stem cells (MSCs) derived from bone marrow of Banna minipig inbred line (BMI). METHODS: BMI-MSCs was isolated from bone marrow by density gradient centrifugation and cultured in DMEM (containing 15% bovine serum) at 37 degrees C with humidified 5% CO2. These cultured stem cells were characterized in clonal growth, expression of specific markers and capability of differentiation. RESULTS: Mesenchymal stem cells were proliferative and could be expanded rapidly in vitro. Clonal growth of these cells can be observed when small amount of cells was inoculated. These cells were SH2, SH3, SH4, SB10 and SB21 positive. And it was proved that these cells possess osteo-differentiation ability, up-regulated alkaline phosphatase expression and calcium secretion after osteosupplement was added into the media for several days. CONCLUSION: Mesenchymal stem cells derived from bone marrow of BMI possess the general characters of stem cell.
Hematopoietic stem cells (HSCs) are tissue specific stem cells that replenish all mature blood lineages during the lifetime of an individual. Hematopoietic cell clusters in the aorta of vertebrate embryos play a pivotal role in the formation of the adult blood system. Recently, people have learned a lot about the embryonic HSCs on their development and homing. During their differentiation, HSCs are regulated by the transcription factors, such as Runx1 and Notch signaling pathway, etc. MicroRNAs also regulate the self-renewal and differentiation of hematopoietic stem/progenitor cells on the post-transcriptional levels. Since the onset of circulation, the formation of HSCs and their differentiation into blood cells, especially red blood cells, are regulated by the hemodynamic forces. It would be of great significance if we could treat hematologic diseases with induced HSCs in vitro on the basis of fully understanding of hemotopoietic stem cell development. This review is focused on the advances in the research of HSCs' development and regulation.
Objective To investigate the effect of Kartogenin (KGN) combined with adipose-derived stem cells (ADSCs) on tendon-bone healing after anterior cruciate ligament (ACL) reconstruction in rabbits. Methods After the primary ADSCs were cultured by passaging, the 3rd generation cells were cultured with 10 μmol/L KGN solution for 72 hours. The supernatant of KGN-ADSCs was harvested and mixed with fibrin glue at a ratio of 1∶1; the 3rd generation ADSCs were mixed with fibrin glue as a control. Eighty adult New Zealand white rabbits were taken and randomly divided into 4 groups: saline group (group A), ADSCs group (group B), KGN-ADSCs group (group C), and sham-operated group (group D). After the ACL reconstruction model was prepared in groups A-C, the saline, the mixture of ADSCs and fibrin glue, and the mixture of supernatant of KGN-ADSCs and fibrin glue were injected into the tendon-bone interface and tendon gap, respectively. ACL was only exposed without other treatment in group D. The general conditions of the animals were observed after operation. At 6 and 12 weeks, the tendon-bone interface tissues and ACL specimens were taken and the tendon-bone healing was observed by HE staining, c-Jun N-terminal kinase (JNK) immunohistochemical staining, and TUNEL apoptosis assay. The fibroblasts were counted, and the positive expression rate of JNK protein and apoptosis index (AI) were measured. At the same time point, the tensile strength test was performed to measure the maximum load and the maximum tensile distance to observe the biomechanical properties. Results Twenty-eight rabbits were excluded from the study due to incision infection or death, and finally 12, 12, 12, and 16 rabbits in groups A-D were included in the study, respectively. After operation, the tendon-bone interface of groups A and B healed poorly, while group C healed well. At 6 and 12 weeks, the number of fibroblasts and positive expression rate of JNK protein in group C were significantly higher than those of groups A, B, and D (P<0.05). Compared with 6 weeks, the number of fibroblasts gradually decreased and the positive expression rate of JNK protein and AI decreased in group C at 12 weeks after operation, with significant differences (P<0.05). Biomechanical tests showed that the maximum loads at 6 and 12 weeks after operation in group C were higher than in groups A and B, but lower than those in group D, while the maximum tensile distance results were opposite, but the differences between groups were significant (P<0.05). Conclusion After ACL reconstruction, local injection of a mixture of KGN-ADSCs and fibrin glue can promote the tendon-bone healing and enhance the mechanical strength and tensile resistance of the tendon-bone interface.
Objective To introduce the basic research and cl inical appl ication of stem cells transplantation for treating diabetic foot. Methods The recent original articles about the stem cells transplantation for treating diabetic foot were extensively reviewed. Results Transplanted different stem cells in diabetic foot could enhanced ulceration heal ing in certain conditions, increase neovascularization and avoid amputation. Conclusion Stem cells transplantation for treating diabeticfoot may be a future approach.
Objective To investigate the method of cultivation and the feature of differentiation of spinal cordderived stem cells in vitro.Methods The neural stemcells from spinal cord of 15 days fetal rats were harvested and cultivated in aserumfree limited medium. The stem cells were induced to differentiate and theresults were identified by cellular immunohistochemistry. Results Lots of stem cells were obtained from the spinal cord of fetal rats and the sphere of stemcells was formed about 10 days. Neural stem cells can give rise to mature neurons and astrocytes.Conclusion Epidermal growth factor/basic fibroblast growth factor serum-free limited medium can promote the proliferation activity ofthe stem cells. Spinal cord-derived stem cells can differentiate into glial cells and neurons.
Objective To construct the recombined DNA pcDNA3.1-hBMP-2 and transfect into human marrow stromal stem cells (MSCs) in vitro, and to explore theeffects of transfection on cellular proliferation and expression of vascular endothelial growth factor (VEGF). Methods The expression of human bone morphogenetic protein 2(hBMP-2) in these cells after transfection was determined by in situ hybridization and immunohistochemical analysis and Western blot analysis. The changes of cell proliferation were observed by flow cytometry. The effects of BMP-2 gene transfection on expression of VEGF in the cells were analyzed by in situ hybridization of VEGF cDNA probe. Results Stable expressionof hBMP-2 in pcDNA3.1-hBMP-2 transfected MSCs was confirmed in the levels of mRNA and protein.Cellular proportion in S period increased, which indicated that the synthesis of cell DNA increased. The expression of VEGF in the cells increased obviously. Conclusion With the help of lipofectamine, the pcDNA3.1-hBMP-2 were transfected into human MSCs successfully. hBMP-2 plays an important role in promoting cellular proliferation and vascular generation during bone repair.
Duchenne muscular dystrophy is an X-linked inherited progressive degenerative muscle disease caused by mutations in the dystrophin gene, and is one of the most common progressive muscular dystrophies. We will review the selection of genetic diagnosis methods for Duchenne muscular dystrophy, the selection of experimental animal models, and treatment for the primary cause (including gene replacement therapy, exon skipping therapy, genome editing, stop codon read-through therapy, and stem cell therapy), the treatment of secondary pathological reactions and methods of assessing disease progression. The purpose is to enrich clinicians’ knowledge of the disease and provide a reference and help for the clinical diagnosis and treatment of Duchenne muscular dystrophy.