west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "干细胞" 621 results
  • RESEARCH ADVANCEMENT OF BONE MARROW DERIVED STEM CELL HETEROGENEITY AND ITS ROLE ININTESTINAL EPITHELIAL REPAIR

    Objective To summarize and review the heterogeneity of bone marrow derived stem cells (BMDSCs) and its formation mechanism and significance, and to analyze the possible roles and mechanisms in intestinal epithel ial reconstruction. Methods The related l iterature about BMDSCs heterogeneity and its role in intestinal epithel ial repair was reviewed and analyzed. Results The heterogeneity of BMDSCs provided better explanations for its multi-potency. The probable mechanisms of BMDSCs to repair intestinal epithel ium included direct implantation into intestinal epithel ium, fusion between BMDSCs and intestinal stem cells, and promotion of injury microcirculation reconstruction. Conclusion BMDSCs have a bright future in gastrointestinal injury caused by inflammatory bowl disease and regeneration.

    Release date:2016-09-01 09:17 Export PDF Favorites Scan
  • ECTOPIC OSTEOGENESIS OF BONE MARROW STROMAL CELLS INDUCED BY BONE MORPHOGENETIC PROTEIN

    OBJECTIVE To investigate the ectopic osteogenesis of bone marrow stromal cells (MSC) induced by bone morphogenetic protein(BMP) in vitro and in vivo, providing the experimental evidence for making an artificial bone with its own capacity of bone formation. METHODS MSC were separated and cultured from bone marrow of Wistar rats, MSC were co-cultured with BMP in vitro (cultured in plate and diffuse chamber). Artificial coral hydroxyapatites (CHA) with MSC and BMP were implanted into dorsal muscles of Wistar rats, their bone formation were observed by morphological examination, histochemistry and immunohistochemistry. RESULTS Only cartilaginous matrix were produced by MSC in vitro (cultured in plate and diffuse chamber), and both cartilaginous and bone matrix production within the combined grafts were seen. The bone formation of experimental groups (CHA + BMP + MSC) was ber than that of control A(CHA + MSC) and control B(CHA). CONCLUSION It may be possible to produce an artificial bone with its own capacity of bone formation by combined graft (CHA + BMP + MSC). There may be multiple factors as well as BMP inducing bone formation both in the whole body and the location of the implantation. Further research on these factors will have the significance for making the ideal artificial bone.

    Release date:2016-09-01 10:20 Export PDF Favorites Scan
  • GENE TRANSFECTED HUMAN DENTALPULP STEM CELLS

    Objective To investigate the heterotopic odontogenesis ability ofDelta1 gene transfected human dental pulp stem cell (DPSC) and nanohydroxyapatite/collagen (nHAC) composite scaffold. Methods The cultured human DPSC was transfected with Delta1-enhanced green fluorescent protein recombinant retrovirus supernatant,and was selected by puromycin to obtain the positive cell clone. The experimental group contained the Delta1 transfected DPSC; however, the control group did not contain the Delta1 transfected DPSC but contained DPSC transfected with vectors only. The cells were seeded into the nHAC carriers and were cultured in the odonto-inductive medium. The growth of the transduced cells in the carriers was observed by the fluorescent phase contrast microscope and the scanning electron microscope (SEM). The cell-carrier composites were subcutaneously transplanted into the Delta1 transfected 8 nude mice (female, 8 weeks old). Eight weeks after operation,the composites were taken out and tested with the histological and the immunohistological methods.Results Green fluorescence was observed inthe cells in the experimental group, which were grown in the carriers by the fluorescent phase contrast microscope. Observed by SEM, great amounts of transduced DPSC were observed along the scaffold materials, even filling the porous structures of nHAC and secreting a lot of extracellular matrix. However, in the control group, much fewer cells were found in the carriers. All the 4 Delta1 transduced DPSC-nHAC composites produced dentin-like structures that lined the surfaces of some nHAC porous structures. The odontoblast-like cells extended the cytoplasmic processes into the dentinal matrix, which was interfaced with a pulp-like interstitial tissue infiltrated with the blood vessels. Dentin sialophosphoprotein was expressed in the odontoblast-like cells when immunohisochemistry was performed. The morphology of the control composite was a typical one of the fibrous connective tissue,and only a little dentin-like structure was found in 2 of the 8 control transplants. Conclution DPSC can be used as the recipient cell of the Delta1 gene for expression and secretion of the Delta1 protein. The composites of the transfected cells and nHAC can induce heterotopic odontogenesis, which indicates that Delta1 is a novel candidate for the gene enhanced dentinpulp composite engineering. 

    Release date:2016-09-01 09:20 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON REPAIR OF ARTICULAR CARTILAGE DEFECTS WITH HOMOGRAFT OF MARROW MESENCHYMAL STEM CELLS SEEDED ONTO POLY-L-LACTIC ACID/GELATIN

    Objective To investigate the effect of homograft of marrow mesenchymal stem cells (MSCs) seeded onto poly-L-lactic acid (PLLA)/gelatin on repair of articular cartilage defects. Methods The MSCs derived from36 Qingzilan rabbits, aging 4 to 6 months and weighed 2.5-3.5 kg were cultured in vitroand seeded onto PLLA/gelatin. The MSCs/ PLLA/gelatin composite was cultured and transplanted into full thickness defects on intercondylar fossa. Thirty-six healthy Qingzilan rabbits were made models of cartilage defects in the intercondylar fossa. These rabbits were divided into 3 groups according to the repair materials with 12 in each group: group A, MSCs and PLLA/gelatin complex(MSCs/ PLLA/gelatin); group B, only PLLA/gelatin; and group C, nothing. At 4,8 and 12 weeks after operation, the gross, histological and immunohistochemical observations were made, and grading scales were evaluated. Results At 12 weeks after transplantation, defect was repaired and the structures of the cartilage surface and normal cartilage was in integrity. The defects in group A were repaired by the hylinelike tissue and defects in groups B and C were repaired by the fibrous tissues. Immunohistochemical staining showed that cells in the zones of repaired tissues were larger in size, arranged columnedly, riched in collagen Ⅱ matrix and integrated satisfactorily with native adjacent cartilages and subchondral bones in group A at 12 weeks postoperatively. In gross score, group A(2.75±0.89) was significantly better than group B (4.88±1.25) and group C (7.38±1.18) 12 weeks afteroperation, showing significant differences (P<0.05); in histological score, group A (3.88±1.36) was better than group B (8.38±1.06) and group C (13.13±1.96), and group B was better than group C, showing significant differences (P<0.05). Conclusion Transplantation of mesenchymal stem cells seeded onto PLLA/gelatin is a promising way for the treatment of cartilage defects.

    Release date:2016-09-01 09:23 Export PDF Favorites Scan
  • 成年山羊皮肤干细胞体外克隆与诱导分化

    Objective To establish a good method and culture system to isolate skin stem cell and expand it in vitro so as to lay a foundation for exploring the proliferation and differentiation mechanism of skin stem cell. Methods Skin stem cells were obtained by explant culture and identified by using alkaline phosphatase(ALP) staining and differentiating experiment in vitro. Stem cell was induced by the cocktail of conditional medium with cell growth factor (insulin like growth factor and epidermal growth factor). Results Skin stem cell colonies were derived from ear skin tissues of adult dairy goats. The colonies had some characteristics of embryonic stem cells, such as the ability to be continously passaged (Passage 5) and the morphology nest-like. They continued to be ALP positive and had the capacity of forming embryoid bodies. These cells were pluripotent and stem-like cells. In vitro these stem cell can be induced to be Follicle-like structure, Astrocyte-like cells, osteoblast-like cell. Conclusion Explant culture is a good method to isolate skin stem cell, which can be induced to be committed differentiation and trans-differentiation.

    Release date:2016-09-01 09:35 Export PDF Favorites Scan
  • EFFECT OF AUTOLOGOUS BONE MARROW MESENCHYMAL STEM CELLS AND EXTROGENOUS SODIUM HYALURONATE ON REPAIRING KNEE JOINT DEFECT IN RABBITS

    Objective To explore the relationship of the limited resource of the autologous bone marrow mesenchymal stem cells (MSCs) in articularcavity to the treatment results of full-thickness articular cartilage defect, and to investigate whether the extrogenous sodium hyaluronate(SH) promotes the migration of MSCs cultured in vitro tothe articular defect in vivo. Methods Sixty-six Japan rabbits were made the model of the full-thickness articular cartilage defect (5 mm width and 4 mm depth).The autologous MSCs were extracted from the rabbit femur, cultured in vitro, labeledby Brdu, and injected into the injured articular cavity with or without SH. Theexperiment was divided into 4 groups; group A (MSCs and SH, n=15); group B (MSCs, n=15); group C (SH, n=18); and group D (non-treatment, n=18). The morphologic observation was made by HE staining, Mallory staining and immunohistochemical staining after 5 weeks, 8 weeks and 12 weeks of operation. Results There were significant differences in the thickness of repairing tissue between group A and group B(Plt;0.01); but there were no significant differences between group A and group C, and between group B and group D(P>0.05). Thehistological observation showed that the main repairing tissue was fibrocartilage in group A and fiber tissue in group B. Conclusion MSCs cultured in vitro and injected into the articular cavity can not improve the treatment results of the articular cartilage defect. Extrogenous SH has effect on repairing cartilage defect. The extrogenous SH has no effect on the chemotaxis of the MSCs, and on the collection of MSCs into the joint defect.

    Release date:2016-09-01 09:33 Export PDF Favorites Scan
  • THE OPTIMIZATION OF THE METHOD OF CULTURING NEURAL STEM CELLS IN NEONATAL RAT BRAIN

    Objective To establish a better method of isolating andculturing ofneural stem cells(NSCs) in neonatal rat brain. Methods Tissue of brain was isolated from neonatal rats. Different medium and culture concentration were used toculture NSCs of neonatal rat. The culture concentration used were 1×10 4, 1×105, 1×106and 1×107/ml respectively. Ingredient of medium was classified into group 1 to 8 respectively according to whether to add 2% B27, epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) as well as the difference in culture concentration. The cells were induced to differentiate asto be confirmed as NSCs, and then were checked by phase contrast microscopy and identified by immunocytochemistry. Results The cells isolated and cultured gathered into neurospheres. The cells were capable of proliferating and maintaining longterm survival in vitro. The cells could be differentiated into neurons and glia.It was to the benefit of the survival of NSCs to add 5% fetal bovine serum(FBS)into the medium at the beginning of the culturing. When 10% FBS was added intothe medium, the neurospheres differentiated quickly. When concentration 1×106/ ml was used, the growth rate of the cells was the highest of all the concentrations. Reasonably higher cell concentration promoted the proliferation of NSCs. It was necessary to add 2% B27, EGF, and bFGF into the medium. The cells had the best growth when 2% B27, 20 ng/ml bFGF and 20 ng/ml EGF were added into the culture medium. EGF and bFGF had cooperative effect. Conclusion A better method of isolating and culturing of NSCs in neonatal rat brain is established and the foundation for future research is laid.

    Release date:2016-09-01 09:29 Export PDF Favorites Scan
  • CULTURING AND CRYOPRESERVATION OF PRECARTILAGINOUS STEM CELLS FROM NEONATE RAT

    Objective To establish an effective way to cryopreserveprecartilaginous stem cells(PSCs) of neonate rat. Methods PSCs [fibroblast growth factor-3(FGFR-3) positive cells] were isolated and purified by magnetic cell sorting method. PSCs were cultured and amplified to the third generation. PSCs were preserved in liquid nitrogen. The biological properties of cryopreserved PSCs were investigated by reverse transcriptase polymerase chain reaction(RT-PCR), immunohistochemistry, and immunofluorescence. Results Immunohistochemical and immunofluorescent analysis showed widespread expression of FGFR-3 in cryopreserved PSCs. FGFR-3 could be dectected by RT-PCR in cryopreserved PSCs.Cryopreserved PSCs kept high cell viability, and phenotypic and proliferation characteristics of PSCs in vivo.Conclusion Cryopreservation of PSCs can supply adequate qualified cells for repairing the defects of epiphyseal growth plate by tissue engineering technique.

    Release date:2016-09-01 09:29 Export PDF Favorites Scan
  • THE INDUSTRIALIZATION OF REGENERATIVE MEDICINE——A Potential Market of $ 500 Billion

    Objective To investigate the latest development of tissue engineeredregenerative medicine in industrialization, with the intention to direct work in practical area. Methods A complete insight of regenerative medicine in industrialization was obtained through referring to update publications, visiting related websites, as well as learning from practical experience. Results The aerial view of the future of regenerative medicine was got based on knowledge of four different tissue engineering projects. Conclusion All present efforts should be devoted to regenerative medicine area meeting the industrialized trends.

    Release date:2016-09-01 09:23 Export PDF Favorites Scan
  • RESEARCH PROGRESS OF NEURAL STEM CELLS SIGNAL TRANSDUCTION PATHWAY

    To summarize Notch, basic hel ix-loop-hel ix (bHLH) and Wnt gene signal transduction pathways in the process of differentiation and development of neural stem cells. Methods The l iterature on the gene signal transduction pathway in the process of differentiation and development of neural stem cells was searched and then summarized and analyzed. Results The formation of Nervous System resulted from common actions of multi-signal transduction pathways. There may exist a fixed threshold in the compl icated selective system among Notch, bHLH and Wnt gene signal transduction pathways. Conclusion At present, the specific gene signal transduction pathway of multi pl ication and differentiation of neural stem cells is still unclear.

    Release date:2016-09-01 09:12 Export PDF Favorites Scan
63 pages Previous 1 2 3 ... 63 Next

Format

Content