Objective Choose polylactide-co-glycolide/hydroxyapatite (PLGA/HA) and porous phosphate calcium (PPC) as the object that we will study, compare their degradabality and choose one as a suitable scaffold for rib reconstruction. Methods All the experiments were divided into PLGA/HA group and CPC group. Degradabality experiment in exvivo: put the two scaffold which have the same size into 0.9% NaCl, keep sterile, then put the container into warm cage,get out and weigh them in 2, 4, 8, 12 and 24 weeks, compare the different speed of the two scaffold. Degradability experiment in vivo: put the two scaffold which have the same size under the skin of the rabbit, and weigh them in 2, 4, 8, 12 and 24 weeks, the tissue around the scaffold was examinzed by HE and the scaffold was examined by electron scanning microscope. Results Micro-CT and Scanning electron microscopy shows that CPC group had better structure (1101.2228±0.6184 mg/ccm vs. 1072.5523±0.7442 mg/ccm)and porosity(70.26%±0.45% vs.72.82%±0.51%)than PLGA/HA group; The result of degradabality experiment in vitro shows that the speed of the two scaffolds was slow. It is at 24 weeks that the degradability is obvious,and the PLGA/HA group degraded a lot which was 60%. The result of degradabality experiment in vivo shows that the speed of degradabality of PLGA/HA group was faster than that is in the 0.9% Nacl, also was faster than that of CPC group which was 96%.The reponse of tissue around the PLGA/HA was more sever than that of CPC group which is in favour of the growth of cells. Conclusion As for the reconstruction of large defect of rib, CPC is more suitable than PLGA/HA.
ObjectiveTo introduce the application of mixed reality technique to the preoperative and intraoperative pulmonary nodules surgery.MethodsOne 49-year female patient with multiple nodules in both lobes of the lung who finally underwent uniportal thoracoscopic resection of superior segment of left lower lobe and wedge resection of left upper lobe was taken as an example. The Mimics medical image post-processing software was used to reconstruct the patient's lung image based on the DICOM data of the patient's chest CT image before the surgery. The three-dimensional reconstructed image data was imported into the HoloLens glasses, and the preoperative discussions were conducted with the assistance of mixed reality technology to formulate the surgical methods, and the preoperative conversation with the patients was also conducted. At the same time, mixed reality technology was used to guide the surgery in real time.ResultsMixed reality technology can clearly pre-show the important anatomical structures of blood vessels, trachea, lesions and their positional relationship. With the help of mixed reality technology, the operation went smoothly. The total operation time was 49 min, the precise dorsal resection time was 27 min, and the intraoperative blood loss was about 39 mL. The patient recovered well and was discharged from hospital smoothly after surgery.ConclusionMixed reality technology has certain application value before and during the surgery for pulmonary nodules. The continuous maturity of this technology and its further application in clinics will not only bring a new direction to the development of thoracic surgery, but also provide a wide prospect.
Objective To access the possibil ity of CPC as a suitable scaffold for tissue engineering artificial rib by morphologic observation, adhesion experiments and cellar prol iferation experiments. Methods The 5 mm × 5 mm × 5 mm CPCs were prepared and the structure and components of CPC were compared with those of the normal human bone by micro-CT and scanning electron microscope. Bone marrow aspirates were harvested from the young pig and monuclear cells were separated. The first passage cells were collected and re-suspended in the culture media at a density of 6 × 105 cells/mL. There was 150 μL suspension which was incoluated on the CPC, and then cells were recollected and counted 4, 12 and 24 hours after inoculation. MTT was used to examine the growth condition of BMSCs on the surface of CPC. The scanning electron microscope was used to observe the CPC scaffold 7 days after inoculation, and comparison was made with CPC and the normal human bone. Results The adhesion rate of CPC was 28.00% ± 0.98%, 46.70% ± 1.14% and 48.50% ± 1.18%, respectively 4, 12 and 24 hours after compound culture. The prol iferation rate of CPC was 1.103 ± 0.214, 1.557 ± 0.322, 1.920 ± 0.178, 2.564 ± 0.226, 2.951 ± 0.415 and 3.831 ± 0.328, respectively 1, 2, 3, 4, 5 and 6 days after compound culture, with an obvious rising trend. The micro-CT demonstrated that the content of hydroxyapatite of porous phosphate calcium was (1 101.222 8 ± 0.618 4) mg/ ccm while that of the normal human bone was (1 072.552 3 ± 0.744 2) mg/ccm, and the porosity of porous phosphate calcium was 70.26% ± 0.45% while that of the normal human bone was 72.82% ± 0.51%, and there was no significant difference (P gt; 0.05). The experiment of cell prol iferation showed that the cell which was cultivated with porous phosphate calcium prol iferated rapidly. Through the inverted phase contrast microscope, it was found that the cells grew well and there was no dead cell, which indicated that the material had no toxicity. The rate of the cell adhesion to CPC was less than 50%. Conclusion The structure and components of CPC are similar to those of the normal human bone, and BMSCs grow well on the surface of it, so it is asuitable scaffold for tissue engineering artificial rib. However, the cell adhesion abil ity is to be further improved.
ObjectiveTo investigate the safety and efficacy of 3D thoracoscopic surgery in uniportal lobectomy.MethodsClinical data of 248 patients with lung cancer who underwent uniportal thoracoscopic lobectomy in our hospital from September 2018 to May 2019 were retrospectively analyzed. Patients were divided into two groups according to different surgical methods, a 3D thoracoscopic group (76 patients, including 52 males and 24 females with an average age of 58.59±7.62 years) and a 2D thoracoscopic group (172 patients, including 102 males and 70 females with an average age of 57.75±8.59 years). Statistical analysis of clinical and pathological data, lymph node dissection, surgical complications, postoperative hospital stay, etc was performed.ResultsCompared with the 2D thoracoscopic group, the 3D thoracoscopic group had shorter operation time, more lymph nodes dissected and pleural effusion on the first day after operation (P<0.05). There was no significant difference in the postoperative chest tube duration, postoperative hospital stay, incidence of pulmonary infection, arrhythmia, bronchopleural fistula, or recurrent laryngeal nerve injury between the two groups.ConclusionCompared with the traditional 2D thoracoscopic minimally invasive surgery, uniportal lobectomy with 3D thoracoscopic surgery is safer and more efficient during operation, and lymph node dissection is more thorough, which is worth promoting.