Electrocardiogram (ECG) is a noninvasive, inexpensive, and convenient test for diagnosing cardiovascular diseases and assessing the risk of cardiovascular events. Although there are clear standardized operations and procedures for ECG examination, the interpretation of ECG by even trained physicians can be biased due to differences in diagnostic experience. In recent years, artificial intelligence has become a powerful tool to automatically analyze medical data by building deep neural network models, and has been widely used in the field of medical image diagnosis such as CT, MRI, ultrasound and ECG. This article mainly introduces the application progress of deep neural network models in ECG diagnosis and prediction of cardiovascular diseases, and discusses its limitations and application prospects.
Portable electrocardiogram monitor is an important equipment in the clinical diagnosis of cardiovascular diseases due to its portable, real-time features. It has a broad application and development prospects in China. In the present review, previous researches on the portable electrocardiogram monitors have been arranged, analyzed and summarized. According to the characteristics of the electrocardiogram (ECG), this paper discusses the ergonomic design of the portable electrocardiogram monitor, including hardware and software. The circuit components and software modules were parsed from the ECG features and system functions. Finally, the development trend and reference are provided for the portable electrocardiogram monitors and for the subsequent research and product design.
Deep learning method can be used to automatically analyze electrocardiogram (ECG) data and rapidly implement arrhythmia classification, which provides significant clinical value for the early screening of arrhythmias. How to select arrhythmia features effectively under limited abnormal sample supervision is an urgent issue to address. This paper proposed an arrhythmia classification algorithm based on an adaptive multi-feature fusion network. The algorithm extracted RR interval features from ECG signals, employed one-dimensional convolutional neural network (1D-CNN) to extract time-domain deep features, employed Mel frequency cepstral coefficients (MFCC) and two-dimensional convolutional neural network (2D-CNN) to extract frequency-domain deep features. The features were fused using adaptive weighting strategy for arrhythmia classification. The paper used the arrhythmia database jointly developed by the Massachusetts Institute of Technology and Beth Israel Hospital (MIT-BIH) and evaluated the algorithm under the inter-patient paradigm. Experimental results demonstrated that the proposed algorithm achieved an average precision of 75.2%, an average recall of 70.1% and an average F1-score of 71.3%, demonstrating high classification accuracy and being able to provide algorithmic support for arrhythmia classification in wearable devices.
In this paper, the response of individual's physiological system under psychological stress state is discussed, and the theoretical support for psychological stress assessment research is provided. The two methods, i.e. the psychological stress assessment of questionnaire and physiological parameter assessment used for current psychological stress assessment are summarized. Then, the future trend of development of psychological stress assessment research is pointed out. We hope that this work could do and provide further support and help to psychological stress assessment studies.
ObjectiveTo explore the actual effect of “graphic-sequenced memory method” in teaching electrocardiogram (ECG). MethodsOne hundred students were randomly divided into a traditional teaching group (n=50) and an innovative teaching group (n=50) in May, 2014. Teachers in the traditional teaching group utilized the traditional teaching outline, and teachers in the innovative teaching group received training in the new teaching method and syllabus. All students took an examination in the final semester by analyzing 20 ECGs from real clinical cases and gave their ECG reports. ResultsThe average ECG reading time was (32.0±4.8) minutes for the traditional teaching group and (18.0±3.6) minutes for the innovative teaching group. The average ECG accuracy results were (43.0±5.2)% for the traditional teaching group and (77.0±9.6)% for the innovative teaching group. ConclusionsECG learning is an important branch of the cardiac discipline, but ECG’s mechanisms are intricate and the learning content scattered. Textbooks tend to make students feel confused due to the restrictions of the length and format of the syllabi, and there are many other limitations. Graphic-sequenced memory method is a useful method which can be fully used in ECG teaching.
Early accurate detection of inferior myocardial infarction is an important way to reduce the mortality from inferior myocardial infarction. Regrading the existing problems in the detection of inferior myocardial infarction, complex model structures and redundant features, this paper proposed a novel inferior myocardial infarction detection algorithm. Firstly, based on the clinic pathological information, the peak and area features of QRS and ST-T wavebands as well as the slope feature of ST waveband were extracted from electrocardiogram (ECG) signals leads Ⅱ, Ⅲ and aVF. In addition, according to individual features and the dispersion between them, we applied genetic algorithm to make judgement and then input the feature with larger degree into support vector machine (SVM) to realize the accurate detection of inferior myocardial infarction. The proposed method in this paper was verified by Physikalisch-Technische Bundesanstalt (PTB) diagnostic electrocardio signal database and the accuracy rate was up to 98.33%. Conforming to the clinical diagnosis and the characteristics of specific changes in inferior myocardial infarction ECG signal, the proposed method can effectively make precise detection of inferior myocardial infarction by morphological features, and therefore is suitable to be applied in portable devices development for clinical promotion.
Sudden cardiac arrest (SCA) is a lethal cardiac arrhythmia that poses a serious threat to human life and health. However, clinical records of sudden cardiac death (SCD) electrocardiogram (ECG) data are extremely limited. This paper proposes an early prediction and classification algorithm for SCA based on deep transfer learning. With limited ECG data, it extracts heart rate variability features before the onset of SCA and utilizes a lightweight convolutional neural network model for pre-training and fine-tuning in two stages of deep transfer learning. This achieves early classification, recognition and prediction of high-risk ECG signals for SCA by neural network models. Based on 16 788 30-second heart rate feature segments from 20 SCA patients and 18 sinus rhythm patients in the international publicly available ECG database, the algorithm performance evaluation through ten-fold cross-validation shows that the average accuracy (Acc), sensitivity (Sen), and specificity (Spe) for predicting the onset of SCA in the 30 minutes prior to the event are 91.79%, 87.00%, and 96.63%, respectively. The average estimation accuracy for different patients reaches 96.58%. Compared to traditional machine learning algorithms reported in existing literatures, the method proposed in this paper helps address the requirement of large training datasets for deep learning models and enables early and accurate detection and identification of high-risk ECG signs before the onset of SCA.
目的:通过冠脉造影探讨心电图对冠心病的诊断价值。方法:对226例可疑冠心病患者进行心电图与冠脉造影进行对比分析。结果:心电图诊断冠心病的灵敏度为 86.49%,特异度为 65.38%,假阳性率为3462%,假阴性率为 13.51%。心电图随着冠状动脉病变支数增加而检出冠心病的阳性率增高。结论:心电图是临床诊断冠心病最快捷、简便、经济而无创的有效方法,但仍存在一定的局限性。
Arrhythmia is a kind of common cardiac electrical activity abnormalities. Heartbeats classification based on electrocardiogram (ECG) is of great significance for clinical diagnosis of arrhythmia. This paper proposes a feature extraction method based on manifold learning, neighborhood preserving embedding (NPE) algorithm, to achieve the automatic classification of arrhythmia heartbeats. With classification system, we obtained low dimensional manifold structure features of high dimensional ECG signals by NPE algorithm, then we inputted the feature vectors into support vector machine (SVM) classifier for heartbeats diagnosis. Based on MIT-BIH arrhythmia database, we clustered 14 classes of arrhythmia heartbeats in the experiment, which yielded a high overall classification accuracy of 98.51%. Experimental result showed that the proposed method was an effective classification method for arrhythmia heartbeats.
In this paper, a heart rate variability analysis system is presented for short-term (5 min) applications, which is composed of an electrocardiogram signal acquisition unit and a heart rate variability analysis unit. The electrocardiogram signal acquisition unit adopts various digital technologies, including the low-gain amplifier, the high-resolution analog-digital converter, the real-time digital filter and wireless transmission etc. Meanwhile, it has the advantages of strong anti-interference capacity, small size, light weight, and good portability. The heart rate variability analysis unit is used to complete the R-wave detection and the analyses of time domain, frequency domain and non-linear indexes, based on the Matlab Toolbox. The preliminary experiments demonstrated that the system was reliable, and could be applied to the heart rate variability analysis at resting, motion states. etc.