Elderly patients account for 80% of cardiac arrest patients. The incidence of poor neurological prognosis after return of spontaneous circulation of these patients is as high as 90%, much higher than that of young. This is related to the fact that the mechanism of hippocampal brain tissue injury after ischemia-reperfusion in elderly cardiac arrest patients is aggravated. Therefore, this study reviews the possible mechanisms of poor neurological prognosis after return of spontaneous circulation in elderly cardiac arrest animals, and the results indicate that the decrease of hippocampal perfusion and the number of neurons after resuscitation are the main causes of the increased hippocampal injury, among which oxidative stress, mitochondrial dysfunction and protein homeostasis disorder are the important factors of cell death. This review hopes to provide new ideas for the treatment of elderly patients with cardiac arrest and the improvement of neurological function prognosis through the comparative analysis of elderly and young animals.
The body of patient undergoing cardiopulmonary resuscitation after cardiac arrest experiences a process of ischemia, hypoxia, and reperfusion injury. This state of intense stress response is accompanied with hemodynamic instability, systemic hypoperfusion, and subsequent multiple organ dysfunction, and is life-threatening. Pulmonary vascular endothelial injury after cardiopulmonary resuscitation is a pathological manifestation of lung injury in multiple organ injury. Possible mechanisms include inflammatory response, neutrophil infiltration, microcirculatory disorder, tissue oxygen uptake and utilization disorder, etc. Neutrophils can directly damage or indirectly damage lung vascular endothelial cells through activation and migration activities. They also activate the body to produce large amounts of oxygen free radicals and release a series of damaging cytokines that further impaire the lung tissue.
目的:探讨心肺复苏循环恢复患者早期评估预后的相关因素。方法:对56例心肺复苏循环恢复患者进行病例回顾分析,分别记录患者年龄、性别以及心肺复苏循环恢复1小时内的瞳孔直径、格拉斯高昏迷评分、血WBC计数、血清肌酐Cr、血清丙氨酸氨基转移酶ALT、肌酸磷酸激酶、D-二聚体定性、血钙、血钾、血清淀粉酶、复苏后1小时内是否使用亚低温治疗、pH值、动脉血氧分压PaO2、动脉血二氧化碳分压PaCO2、血葡萄糖、复苏时间等, 采用多因素logistic回归模型分析心肺复苏循环恢复患者的预后因素。结果:回顾56例心肺复苏循环恢复患者病例, logistic回归分析发现血清淀粉酶、血糖和复苏时间对早期评估心肺复苏循环恢复患者的预后有意义。结论:复苏后1小时内血清淀粉酶、血糖和复苏时间对早期评估心肺复苏循环恢复患者的预后有价值。
Extracorporeal cardiopulmonary resuscitation (ECPR) is a salvage therapy for patients suffering cardiac arrest refractory to conventional resuscitation, and provides circulatory support in patients who fail to achieve a sustained return of spontaneous circulation. ECPR serves as a bridge therapy that maintains organ perfusion whilst the underlying etiology of the cardiac arrest is determined and treated. Increasing recognition of the survival benefit associated with ECPR has led to increased use of ECPR during the past decade. Commonly used indications for ECPR are: age<70 years, initial rhythm of ventricular fibrillation or ventricular tachycardia, witnessed arrest, bystander cardiopulmonary resuscitation within 5 min, failure to achieve sustained return of spontaneous circulation within 15 min of beginning cardiopulmonary resuscitation. This review provides an overview of ECPR utilization, recent outcomes, risk factors, and complications of ECPR. Identifying ECPR indications, rapid deployment of extracorporeal life support equipment, and high-quality ECPR management strategies are of paramount importance to improve survival.
ObjectiveTo investigate the effects of esophageal cooling (EC) on lung injury and systemic inflammatory response after cardiopulmonary resuscitation in swine.MethodsThirty-two domestic male white pigs were randomly divided into sham group (S group, n=5), normothermia group (NT group, n=9), surface cooling group (SC group, n=9), and EC group (n=9). The animals in the S group only experienced the animal preparation. The animal model was established by 8 min of ventricular fibrillation and then 5 min of cardiopulmonary resuscitation in the other three groups. A normal temperature of (38.0±0.5)℃ was maintained by surface blanket throughout the experiment in the S and NT groups. At 5 min after resuscitation, therapeutic hypothermia was implemented via surface blanket or EC catheter to reach a target temperature of 33℃, and then maintained until 24 h post resuscitation, and followed by a rewarming rate of 1℃/h for 5 h in the SC and EC groups. At 1, 6, 12, 24 and 30 h after resuscitation, the values of extra-vascular lung water index (ELWI) and pulmonary vascular permeability index (PVPI) were measured, and meanwhile arterial blood samples were collected to measure the values of oxygenation index (OI) and venous blood samples were collected to measure the serum levels of tumor necrosis factor-α (TNF-α) and inerleukin-6 (IL-6). At 30 h after resuscitation, the animals were euthanized, and then the lung tissue contents of TNF-α, IL-6 and malondialdehyde, and the activities of superoxide dismutase (SOD) were detected.ResultsAfter resuscitation, the induction of hypothermia was significantly faster in the EC group than that in the SC group (2.8 vs. 1.5℃/h, P<0.05), and then its maintenance and rewarming were equally achieved in the two groups. The values of ELWI and PVPI significantly decreased and the values of OI significantly increased from 6 h after resuscitation in the EC group and from 12 h after resuscitation in the SC group compared with the NT group (all P<0.05). Additionally, the values of ELWI and PVPI were significantly lower and the values of OI were significantly higher from 12 h after resuscitation in the EC group than those in the SC group [ELWI: (13.4±3.1) vs. (16.8±2.7) mL/kg at 12 h, (12.4±3.0) vs. (16.0±3.6) mL/kg at 24 h, (11.1±2.4) vs. (13.9±1.9) mL/kg at 30 h; PVPI: 3.7±0.9 vs. 5.0±1.1 at 12 h, 3.4±0.8 vs. 4.6±1.0 at 24 h, 3.1±0.7 vs. 4.2±0.7 at 30 h; OI: (470±41) vs. (417±42) mm Hg (1 mm Hg=0.133 kPa) at 12 h, (462±39) vs. (407±36) mm Hg at 24 h, (438±60) vs. (380±33) mm Hg at 30 h; all P<0.05]. The serum levels of TNF-α and IL-6 significantly decreased from 6 h after resuscitation in the SC and EC groups compared with the NT group (all P<0.05). Additionally, the serum levels of IL-6 from 6 h after resuscitation and the serum levels of TNF-α from 12 h after resuscitation were significantly lower in the EC group than those in the SC group [IL-6: (299±23) vs. (329±30) pg/mL at 6 h, (336±35) vs. (375±30) pg/mL at 12 h, (297±29) vs. (339±36) pg/mL at 24 h, (255±20) vs. (297±33) pg/mL at 30 h; TNF-α: (519±46) vs. (572±49) pg/mL at 12 h, (477±77) vs. (570±64) pg/mL at 24 h, (436±49) vs. (509±51) pg/mL at 30 h; all P<0.05]. The contents of TNF-α, IL-6, and malondialdehyde significantly decreased and the activities of SOD significantly increased in the SC and EC groups compared with the NT group (all P<0.05). Additionally, lung inflammation and oxidative stress were further significantly alleviated in the EC group compared with the SC group [TNF-α: (557±155) vs. (782±154) pg/mg prot; IL-6: (616±134) vs. (868±143) pg/mg prot; malondialdehyde: (4.95±1.53) vs. (7.53±1.77) nmol/mg prot; SOD: (3.18±0.74) vs. (2.14±1.00) U/mg prot; all P<0.05].ConclusionTherapeutic hypothermia could be rapidly induced by EC after resuscitation, and further significantly alleviated post-resuscitation lung injury and systemic inflammatory response compared with conventional surface cooling.
The treatment of organ function damage secondary to return of spontaneous circulation in patients with cardiac arrest is an important part of advanced life support. The incidence of lung injury secondary to return of spontaneous circulation in patients with cardiac arrest is as high as 79%. Understanding the characteristics and related mechanisms of lung injury secondary to return of spontaneous circulation in patients with cardiac arrest, and early identification and treatment of lung injury secondary to return of spontaneous circulation are crucial to the clinical treatment of patients with cardiac arrest. Therefore, this article reviews the research progress on the characteristics, risk factors, mechanisms and treatment of lung injury secondary to return of spontaneous circulation in patients with cardiac arrest, in order to provide a reference for the research and clinical diagnosis and treatment of lung injury secondary to return of spontaneous circulation in patients with cardiac arrest.
Sudden cardiac arrest is one of the critical clinical syndromes in emergency situations. A cardiopulmonary resuscitation (CPR) is a necessary curing means for those patients with sudden cardiac arrest. In order to simulate effectively the hemodynamic effects of human under AEI-CPR, which is active compression-decompression CPR coupled with enhanced external counter-pulsation and inspiratory impedance threshold valve, and research physiological parameters of each part of lower limbs in more detail, a CPR simulation model established by Babbs was refined. The part of lower limbs was divided into iliac, thigh and calf, which had 15 physiological parameters. Then, these 15 physiological parameters based on genetic algorithm were optimized, and ideal simulation results were obtained finally.
American Heart Association updated the guidelines for cardiopulmonary resuscitation (CPR) and emergency cardiovascular care in November 2019. This focused update incorporates the systematic review conducted by the International Liaison Committee on Resuscitation, an expert group consisting of hundreds of international resuscitation scientists, to identify the new evidence supporting the basic and advanced life support and first aid in emergency medical care. This focused update involves the life chain of CPR (dispatcher-assisted CPR and cardiac arrest centers), advanced cardiovascular life support (advanced airways, vasopressors, and extracorporeal CPR), and first aid for presyncope. This present review aims to interpret these updates by reviewing the literature and comparing the recommendations in this update with previous guidelines.