west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "慢病毒" 41 results
  • EFFECTS OF MYOBLAST DETERMINING GENE AND CONNEXIN 43 GENE ON FIBROBLAST DIFFERENTIATION AND BIOLOGICAL FUNCTION IN RATS

    Objective To investigate a change in the differentiation and biological function of the cultured rat fibroblast (FB) transfected by the myoblast determining gene (MyoD) and the connexin 43 (Cx43) gene and to explore the possible mechanism of the MyoD and Cx43 genes on treatment of ischemic heart disease (IHD). Methods The gene cloning technology was used to construct the eukaryotic expressed plasmid vector pLenti6/V5-DEST-MyoD and pLenti6/V5DEST-Cx43 in which MyoD cDNA or Cx43 cDNA was inserted. The RFL-6 FB cells were transfected with exogenetic MyoD cDNA or Cx43 cDNA via lipofectamine, followed by the Blasticidin (50 μg/ml) selection, according to the lentiviral expression system (ViraPower) protocol. The expression and the biological functions of MyoD and Cx43 in the transfectants were testified by RT-PCR, Western blot, and molecular and immunocytochemical methods. The mophological structure changes of the cells were observed under microscope before and after the transfection. Results The expression of MyoD and Cx43 was detected in the MyoD and Cx43 genes transfected FB with RT-PCR and Western blot. The immunocytochemical methods indicated the expressionsof the MyoD and Cx43 genes, while desmin and αactin were found in these cells. The myotubes were found from the cultures incubated a week in the differentiation medium, in which the transfected cells had a characteristic of the filamentsin their cytoplasm and showed a myoblast morphology. Conclusion MyoD cDNA can induce the cultured FB to differentiate into the myoblasts and Cx43 cDNA can enhance the gap junctional intercellular communication between the cell and the cell. Thus, a further experimental foundation for the therapy of IHD can be provided.

    Release date:2016-09-01 09:23 Export PDF Favorites Scan
  • The effect of shRNA interference lentivirus vector targeting rat Sirt1 gene on the expression of Sirt1 in retinal ganglion cell

    Objective To observe the effect of shRNA interference lentivirus vector targeting rat Sirt1 gene on the expression of Sirt1 in retinal ganglion cell (RGC). Methods Four short hairpin (sh) RNA interference sequences targeting rat Sirt1 gene were designed. The target sequences of Oligo DNA were synthesized and annealed to double strand DNA, which was subsequently connected with pGLV3 lentivirus vector to build the lentiviral vector. The positive clones were identified by polymerase chain reaction (PCR) and DNA sequencing. The lentiviral vector construct and lentiviral packaging plasmids were co-transfected into 293T cells, then the titer of lentivirus were determined. The RGC were divided into 6 groups including blank group, negative control group and si-Sirt1-1, si-Sirt1-2, si-Sirt1-3, si-Sirt1-4 groups. Real-time PCR and Western blotting were used to detect the expression of Sirt1 mRNA and protein in the RGC cells. Results PCR and DNA sequencing analysis confirmed that the shRNA sequence was successfully inserted into the lentivirus vector. The concentrated titer of virus suspension was 8×108 TU/ml after the recombinant lentiviral vector successfully transfected and harvested in 293T cells. Comparing with NC group, the expression of Sirt1 mRNA and protein were significantly decreased in the si-Sirt1-1, si-Sirt1-2, si-Sirt1-3 and si-Sirt1-4 groups (F=27.682, 1 185.206; P=0.000, 0.000). The si-Sirt1-2 group had the strongest effect in reducing the expression of Sirt1 mRNA and protein. Conclusion The 4 lentiviral vectors harboring RNAi targeting rat Sirt1 gene can effectively down regulate the expression of Sirt1 mRNA and protein in RGC cells.

    Release date:2017-09-19 03:09 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON VASCULAR ENDOTHELIAL GROWTH FACTOR 165 GENE-MODIFIED RAT HAIR FOLLICLE STEM CELLS MEDIATED BY LENTIVIRAL VECTOR

    ObjectiveTo obtain rat hair follicle stem cells (rHFSCs) which can constantly and highly express vascular endothelial growth factor 165 (VEGF165), and to observe the expression of VEGF165 gene in rat HFSCs. MethodsThe cirri skin of 1-week-old Sprague Dawley rat was harvested and digested by using combination of Dispase and type IV collagenases. The bulge was isolated under microscope. The rHFSCs were cultured by tissue block method. After purified by rapid adhering on collagen type IV, the growth curve of different generations rHFSCs was drawn. The cells were identified by immunofluorescence staining and real time quantitative PCR (RT-qPCR) analysis that tested the expression level of correlated genes. Lentivirus of pLV-internal ribosome entry site (IRES)-VEGF165-enhanced green fluorescent protein (EGFP) (experimental group) and pLV-IRES-EGFP empty vector (control group) was packaged by calcium transfected method and the rHFSCs were transfected. The green fluorescent protein expression was observed by inverted fluorescence microscope, and VEGF165 mRNA and protein expressions were detected using RT-PCR and Western blot. ResultsThe rHFSCs which were isolated, cultured, and purified were like the "slabstone", and had strong adhesion ability and colony formation ability. The purified cells were in latent growth phase at 2-3 days; they were in exponential growth phase at 5-6 days. The expressions of cytokeration 15 (CK15), integrin α6, and integrin β1 (markers of HFSCs) were positive by immunocytochemistry. The RT-qPCR analysis showed that CK15, CK19, integrin α6, and integrin β1 expressed highly, but CD34 (a marker of epidermal stem cells) and CK10 (a marker of keratinocyte) expressed lowly. After 14 days, the transfection efficiency was up to 85.76%±1.91%. RT-PCR analysis and Western blot showed that VEGF165 mRNA and protein expressions were positive in experimental group, and were negative in control group. ConclusionThe rHFSCs with high purity and strong proliferation ability can be obtained by using microscope combined with tissue cultivation and rapid cell adhesion on collagen type IV. The rHFSCs with high expression of VEGF165 can be successfully obtained by lentiviral transfection. This method provides good seeding cells for tissue engineering to construct artificial hair follicles, blood vessels, and skins.

    Release date: Export PDF Favorites Scan
  • Construction and Identification of Dual Target-Regulated Lentiviral Vector of Colorectal Cancer Suppressor Gene CDX2

    ObjectiveTo build a lentiviral expression vector regulated by two targets 5 copies of HREs and hTERTp, express the target gene CDX2, and to test the activity of hTERT promoter by using LoVo cells for transfection. MethodsAfter the primer sets were designed, the hTERT promoter was cloned by PCR amplification from the genome of colon cancer. The CEA promoter was removed from the original vector pLEGFP-5HRE-CEAp by double digestion and PCR method, and then the hTERTp was introduced into the vector to construct the recombinant plasmid pLEGFP-5HRE-hTERTp. 5HRE-hTERTp was obtained by PCR, while the CMV promoter was removed from the original vector pLVX-EGFP-3FLAG by double digestion and PCR method, and then the 5HRE-hTERTp was introduced into the vector to construct the recombinant plasmid pLVX-5HRE-hTERTp-EGFP-3FLAG. The CDX2 was cloned by PCR amplification from GV230-CDX2-EGFP, and the EGFP was removed from the vector pLVX-5HRE-hTERTp-EGFP-3FLAG by double digestion, and then the CDX2 was introduced into the vector to construct the recombinant plasmid pLVX-5HRE-hTERTp-CDX2-3FLAG. LoVo cells ex vivo was transiently transfected by pLVX-5HRE-hTERTp-EGFP-3FLAG to evaluate the activity of hTERTp by detecting the expression of green fluorescence protein EGFP. ResultsPCR and sequencing analyzing showed that pLEGFP-5HRE-hTERTp, pLVX-5HRE-hTERTp-EGFP-3FLAG, and pLVX-5HRE-hTERTp-CDX2-3FLAG were sequenced correctly and the same as our designed. pLVX-5HRE-hTERTp-EGFP-3FLAG was successfully transfected into LoVo cells ex vivo and expressed green fluorescence protein EGFP, which showed that hTERTp was activated and promoted the expression of downstream gene. ConclusionThe lentiviral expression vector, pLVX-5HREhTERTp-EGFP-3FLAG and pLVX-5HRE-hTERTp-CDX2-3FLAG are successfully constructed, which lays the foundation of further research. But the function of dual-target regulation needs further proof.

    Release date: Export PDF Favorites Scan
  • Construction and Identification of Lentiviral Vector of Expressing siRNA Targeting IGF1R, EGFR Gene and Its Inhibition of Liver Cancer Cell Growth

    Objective To study the interferencing and anti-tumor effects of lentiviral vector of siRNA targeting IGF1R and EGFR gene of the liver cancer cell. Methods The complementary DNA containing both sense and antisense Oligo DNA of the targeting sequence was designed, synthesized and connected to the pLVTHM vector, named pLVTHM-IGF1R, into whom the EGFR-siRNA expression frame containing H1 promotor synthesized by RT-PCR was cloned to generate pLVTHM-IGF1R-EGFR-siRNA. The 293T cells were cotransfected by 3 plasmids of pLVTHM-IGF1R-EGFR-siRNA, psPAX2 and pMD2G to enclose LVTHM-IGF1R-EGFR-siRNA, which was amplified in large amount and purified by caesium chloride density gradient centrifugation for measurement of virus titer. SMMC7721 cells infected by LVTHM-IGF1R-EGFR-siRNA were infection group, the untreated SMMC7721 cells and blank vector plasmid LVTHM were two control groups (SMMC7721 cell group and blank vector group). The effect of LVTHM-IGF1R-EGFR-siRNA on IGF1R and EGFR expressions of SMMC7721 cells were detected by RT-PCR and Western blot. The antitumor potential of LVTHM-IGF1R-EGFR-siRNA to SMMC7721 cells was evaluated by Cell Counting Kit-8 assay for cell growth and TUNEL for apoptosis respectively. Results LVTHM-IGF1R-EGFR-siRNA was constructed successfully. Functional pfu titers of LVTHM-IGF1R-EGFR-siRNA was 4.58×109 pfu/ml. Protein and mRNA expression of IGF1R and EGFR of infection group were less than those of blank vector group and SMMC7721 cell group (P<0.05), LVTHM-IGF1R-EGFR-siRNA was more effective to inhibit the proliferation and promote apoptosis of SMMC7721 cells (P<0.05). Conclusion LVTHM-IGF1R-EGFR-siRNA expressing IGF1R-EGFR-siRNA can inhibit the expression of IGF1R and EGFR, and may be used for further investigation of gene therapy of liver cancer.

    Release date:2016-09-08 11:05 Export PDF Favorites Scan
  • Effect of lentivirus-mediated silencing of P75 neurotrophin receptor gene on osteogenic differentiation of bone marrow mesenchymal stem cells in rats

    ObjectiveTo investigate the effect of small interfering RNA (siRNA) lentivirus-mediated silencing of P75 neurotrophin receptor (P75NTR) gene on osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in rats.MethodsThree lentivirus-mediated P75NTR gene siRNA sequences (P75NTR-siRNA-1, 2, 3) and negative control (NC)-siRNA were designed and transfected into the 3rd generation Sprague Dawley (SD) rat BMSCs. The cells morphological changes were observed under an inverted microscope, and the expressions of P75NTR gene and protein in cells were detected by real-time fluorescence quantitative PCR and Western blot. Then the best silencing P75NTR-siRNA for subsequent osteogenic differentiation experiments was screened out. The 3rd generation SD rat BMSCs were randomly divided into experimental group, negative control group, and blank control group (normal BMSCs). The BMSCs of negative control group and experimental group were transfected with NC-siRNA and the selected P75NTR-siRNA lentiviral vector, respectively. The cells of each group were cultured by osteogenic induction. The expressions of osteogenic related proteins [osteocalcin (OCN) and Runx related transcription factor 2 (Runx2)] were detected by Western blot; the collagen type Ⅰ expression was observed by immunohistochemical staining; the osteogenesis of BMSCs was observed by alkaline phosphatase (ALP) detection and alizarin red staining.ResultsAfter lentivirus-mediated P75NTR transfected into BMSCs, the expressions of P75NTR mRNA and protein significantly reduced (P<0.05), and the best silencing P75NTR-siRNA was P75NTR-siRNA-3. After P75NTR gene was silenced, MTT test showed that the cell proliferation in the experimental group was significantly faster than those in the two control groups (P<0.05). After osteogenic induction, the relative expressions of OCN and Runx2 proteins, collagen type Ⅰ expression, and ALP activity were significantly higher in the experimental group than in the two control groups, the differences were significant (P<0.05). With the prolongation of osteogenic induction, the mineralized nodules in the experimental group gradually increased.ConclusionSilencing the P75NTR gene with siRNA lentivirus can promote the osteogenic differentiation of rat BMSCs and provide a new idea for the treatment of bone defects.

    Release date:2020-08-19 03:53 Export PDF Favorites Scan
  • CONSTRUCTION OF RECOMBINANT PORCINE TRANSFORMING GROWTH FACTOR β1 GENE LENTIVIRAL VECTOR AND ITS EXPRESSION IN BONE MARROW MESENCHYMAL STEM CELLS

    Objective To construct recombinant lentiviral expression vectors of porcine transforming growth factor β1 (TGF-β1) gene and transfect bone marrow mesenchymal stem cells (BMSCs) so as to provide TGF-β1 gene-modified BMSCs for bone and cartilage tissue engineering. Methods The TGF-β1 cDNA was extracted and packed into lentiviral vector, and positive clones were identified by PCR and gene sequencing, then the virus titer was determined. BMSCs were isolated frombone marrow of the 2-month-old Bama miniature pigs (weighing 15 kg), and the 2nd and 3rd generations of BMSCs wereharvested for experiments. BMSCs were then transfected by TGF-β1 recombinant lentiviral vectors (TGF-β1 vector group)respectively at multi pl icity of infection (MOI) of 10, 50, 70, 100, and 150; then the effects of transfection were detected bylaser confocal microscope and Western blot was used to determine the optimal value of MOI. BMSCs transfected by empty vector (empty vector group) and non-transfected BMSCs (non-transfection group) were used as control group. RT-PCR, immunocytochemistry, and ELISA were performed to detect the expressions of TGF-β1 mRNA, TGF-β1 protein, and collagen type II. Results Successful construction of recombinant lentiviral vectors of porcine TGF-β1 gene was identified by PCR and gene sequencing, and BMSCs were successfully transfected by TGF-β1 recombinant lentiviral vectors. Green fluorescence was observed by laser confocal microscope. Western blot showed the optimal value of MOI was 70. The expression of TGF-β1 mRNA was significantly higher in TGF-β1 vector group than in empty vector group and non-transfection group (P lt; 0.05). Immunocytochemistry results revealed positive expression of TGF-β1 protein and collagen type II in BMSCs of TGF-β1 vector group, but negative expression in empty vector group and non-transfection group. At 21 days after transfection, high expression of TGF-β1 protein still could be detected by ELISA in TGF-β1 vector group. Conclusion TGF-β1 gene can be successfully transfected into BMSCs via lentiviral vectors, and long-term stable expression of TGF-β1 protein can be observed, prompting BMSCs differentiation into chondrocytes.

    Release date:2016-08-31 04:23 Export PDF Favorites Scan
  • RESEARCH OF LENTIVIRAL VECTOR MEDIATED HUMAN HEPATOCYTE GROWTH FACTOR GENE-MODIFIED BONE MARROW MESENCHYMAL STEM CELLS

    Objective To construct lentiviral vector carrying the human hepatocyte growth factor (hHGF) gene, and then to get hHGF gene/modified bone marrow mesenchymal stem cells (BMSCs) by infecting the BMSCs. Methods The hHGF gene was obtained with PCR from pcDNA-hHGF plasmid. The recombination lentiviral vector plasmid hHGF was constructed with Age I digestion and gene recombinant, then was identified with PCR and sequencing. Mediated by Lipofectamine2000, the three plasmids system of lentiviral vector including pGC-E1-hHGF, pHelper 1.0, and pHelper 2.0 was co-transfected to 293T cells to produce hHGF gene. The supernatant was collected and concentrated by ultracentrifugation and the titer of lentivirus was measured by real-time quantitative PCR. The BMSCs were infected by the constructed lentivirus and the multipl icities of infection (MOI) was identified with fluorescent microscope, the efficiency of infection with flow cytometry (FCM) analysis, the hHGF level with ELISA analysis, and the expression of hHGF gene with RT-PCR. Results Lentiviral vector carrying hHGF gene was constructed successfully. The titer of lentivirus was 1 × 108 TU/mL. The infection efficiency of BMSCs by hHGF lentiviral was high and reached 98% by FCM, and the best MOI was 10. A great mount of green fluorescence was observed with the fluorescent microscope at 28 days after infection. Peak concentration of hHGF secreted by BMSCs/hHGF reached 40.5 ng/mL at 5 days. The concentration could maintain a high level until 28 days after infection. RT-PCR showed that BMSCs/hHGF could express hHGF gene. Conclusion By lentiviral vector, hHGF gene was integrated into BMSCs genome, and it can express stably.

    Release date:2016-08-31 05:48 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON LENTIVIRUS-MEDIATED MULTI-GENES CO-TRANSFECTION IN BONE MARROW MESENCHYMAL STEM CELLS FOR TREATMENT OF KNEE OSTEOARTHRITIS IN CYNOMOLGUS MONKEY

    ObjectiveTo observe the effect of lentivirus-mediated cyclooxygenase 2 (COX-2) and Aggrecanase-1 silencing and insulin-like growth factor 1 (IGF-1) in BMSCs after injecting into the knee joint cavity in cynomolgus monkeys with knee osteoarthritis (OA). MethodsBMSCs were isolated from the bone marrow of 10 donors. The lentivirus vector expressing genes of COX-2, Aggrecanase-1, and IGF-1 were constructed, and transfected into the third generation human BMSCs at 40 multiplicity of infection (virus group); BMSCs transfected with lentivirus-empty vector served as blank-virus group. The growth status and number of BMSCs were observed under inverted phase contrast microscope, and normal BMSCs were used as normal control group. At 1 week after transfected, the mRNA expressions of COX-2, Aggrecanase-1, and IGF-1 were detected with RT-PCR. Nine 3-year-old cynomolgus monkeys were selected to establish the OA model according to Hulth modeling method, and were randomly divided into 3 groups (n=3). At 6 weeks after remodeling, the right knee joint cavity was injected accordingly with 1 mL BMSCs (about 1×107 cells) in virus group and blank-virus group, with 1 mL of normal saline in the blank control group; the left knee served as normal controls. The general condition was observed after injection; at 1, 4, and 6 weeks, the concentrations of prostaglandin E2 (PGE2), IL-1, Aggrecanase-1, and IGF-1 of double knee liquid were detected with ELISA; at 6 weeks, MRI, general observation, histology method, and immunohistochemistry method were used to detect the knee cartilage changes and the expressions of COX-2, Aggrecanase-1, and IGF-1 were measured with RT-PCR. ResultsNo significant difference was found in cell morphology and growth curve between 2 groups after transfection. By RT-PCR, COX-2, and Aggrecanase-1 expressions were significantly reduced, IGF-1 expression was significantly increased in virus group when compared with normal control group and the blank-virus group (P < 0.05). All monkeys survived to the end of the experiment after injection. When compared with blank-virus group and blank control group, the concentrations of PGE2, Aggrecanase-1, and IL-1 significantly decreased and the concentration of IGF-1 significantly increased in the virus group (P < 0.05), but the indicators in 3 groups were significantly higher than those in the normal control group (P < 0.05). MRI showed that abnormal articular surface with high density could be found in virus group, blank-virus group, and blank control group, while the virus group had the minimum area. Gross observation and histological observation showed that the cartilage morphology of virus group, blank-virus group, and blank control group was accordance with early OA articular cartilage changes, but virus group was better than blank-virus group and blank control group in repair degree, whose improved Pineda score was significantly lower (P < 0.05). Immunohistochemical staining showed that the virus group had deeper dyeing with occasional brown particles and more chondrocytes than blank-virus group and blank control group. By RT-PCR, COX-2 and Aggrecanase-1 mRNA expressions of cartilage in virus group were significantly decreased, and IGF-1 expression was significantly increased when compared with blank control group and the blank-virus group (P < 0.05). ConclusionLentivirus-mediated multi-genes co-transfection in BMSCs can inhibit the expressions of COX-2 mRNA and Aggrecanase-1 mRNA, and enhance the IGF-1 mRNA expression, which decreases the concentration of inflammatory factors, and protects the joint cartilage effectively.

    Release date:2016-10-02 04:55 Export PDF Favorites Scan
  • Construction of Stable Expression of Human Thyrotropin Receptor α-Subunits on HEK 293T Cells

    The aim of this study was to establish stable expression of human thyroid stimulating hormone receptor (TSHR) α-subunit (hTSHRA) on human embryonic kidney 293T (HEK 293T). HEK 293T cell lines with stable expression of hTSHRA could be used for detecting affinity between hTSHRA and potential TSHR blocking-peptide. We firstly constructed hTSHRA gene into lentiviral vectors GV218. The sequence comparison indicated that we had constructed GV218-hTSHRAA. Western blot demonstrated the 52 kD aim band of hTHSRA on over-expressed HEK 293T cells. GV218-hTSHRA constructions and pHelper were then co-transfected into HEK 293T cells to form packaging plasmid. The HEK 293T cells that stably expressed hTSHRA could also express green fluorescent protein. The titer of lentiviral packaging vector is 2×108 TU/mL with qPCR. The lentiviral packaging vector thereafter was transfected into HEK 293T cells again. The hTSHRA expressed on the HEK 293T cells. Human TSHRA stably expressed on HEK 293T upon continuously passaging. Therefore, we established hTSHRA stable expression on HEK 293T cells by constructing GV218-hTHSR lentiviral packaging vector. It is a useful tool for studying TSHR affinity with anti-thyroid peptide.

    Release date: Export PDF Favorites Scan
5 pages Previous 1 2 3 4 5 Next

Format

Content