Human fibroblasts and human epidermal keratinocytes were used for culture. Chitosan solution were added in the culture solution(DMEM). After 72 hours, the fibroblasts showed rapid growth in the control culture without Chitosan, But the numbers of human fibroblasts from growth was decreased as the concentration of Chitosan was increasing. On the contrary the human epidermal keratinocytes growed more rapidly in the culture with Chitosan than in the culture without Chitosan. The results showed that Chitosan inhibited the growwth of human fibroblast and stimulated the growth of human epidermal keratinocyte .
Objective To compare the efficiency of epidermis cell culture between big graft method and small strip method. Methods The big graft method was to cut the skin tissue reticularly from dermis layer while the epidermis were not cut off. After it was digested fully in trypsin, theepidermis was separated from skin and was used to culture epidermal cells. The small strip method was routine. The time to cut the skin and to separate the epidermis was recorded, and the number and quality of cells were compared between two methods. Results It took 8-10 minutes to cut an area of 5 cm2 skin into small strips and 1-2 minutes into big grafts. It took 10-15 minutes to separate the epidermis from the same area skin by small strip method and 2 minutes by big graft method. The cells showed better vigor and its number was more by big grafts than by small strips.The chance of fibroblast contamination was reduced obviously. Conclusion The big graft method is simpler than the small strip method and can culture more epidermis cells with less chance of fibroblast contamination.
Objective To observe the proliferation and migration of endothelial cells after 30% total burn surface area (TBSA) of deep partial thickness scald, and the effect of basic fibroblast growth factor (bFGF) on angiogenesis during wound healing.Methods A total of 133 male Wistar ratswere divided randomly into normal control (n=7), injured control group (n=42), bFGF group (n=42) andanti-c-fos group (n=42). The apoptosis expression of fibroblasts was determinedwith in situ hybridization and the changes of proliferation cell nuclear antigen(PCNA), focal adhesion rinase(FAK), c-fos and extracellular signalregulated kinase(ERK) proteins expression were detected with immunohistochemistry staining technique after 3 hours, 6 hours, 1 day, 3 days, 7 days, 14 days and 21 days of scald.Results In injured control group and bFGF group, theproliferation rate of the vascular endothelial had evident changes 7 days and14 days after scald; the expression of FAK was increased 14 days after scald. ERK proteins expression was different between injury control group and bFGF group at initial stage after scald. Stimulation of ERKs by bFGF led to up-regulation of c-fos and b expression of FAK. Conclusion Exogenous bFGF extended the influence on wound healing process by ERK signaling pathway, affecting migration cascade of vascular endothelial cell. The oncogene proteins play an important role on accelerating angiogenesis duringwound healing.
To evaluate the effects of bFGF on wound healing and the side-effects of bFGF, a multi-centers and controlled clinical trial were carried out in 32 hospitals in China. One thousand and twenty-four cases with acute wounds such as burn, donor site or operative wound and chronic wounds such as bed sore, draining sinus, ulcer were treated with bFGF. Another 826 cases with the similar wounds were used as control. The results showed: 1. The duration of wound healing was shorted 3-4 days in trial group when compared with the contorl; 2. The successful rates from bFGF on promoting the wound healing for burns, operative wounds and chronic dermal ulcers was 95.2%, 96.5% and 93.5%, respectively; 3. No adverse reaction was found. CONCLUSION: 1. bEGF can make the "silent" reparative cells dividing and proliferating. 2. bFGF can improve the quality and the velocity of wound healing.
Objective To study the effects of dermal template on the biological behaviors of fibroblasts during wound healing. Methods A total of 120 rats were made fullthickness wound modes on the dorsum and divided into 4 groups,in group 1, the wounds were allowed to heal by contraction(ConT);in group2, the wounds covered with fullthickness skin grafts( FTSG); in group 3, the wounds were with split thickness skin grafts (STSG); and ingroup 4, the wounds were covered by dermal regeneration template with overlying thin splitthickness autograft (ADMT).The specimens were obtained at one week, two weeks, four weeks, six weeks,and twelve weeks respectively. The expressions of α smooth muscle actin(αSMA,characteristic of MFB),fibronectin(FN),integrin α2,β1 and transforming growth factor β1(TGF-β1) were examined by immunohistochemical analysis. Results Positive expression of α-SMA、FN、integrin α2β1 and TGF-β1 in ADMT groups was significantly lower than that in STSG group and ConT group, but higher than that in FTSG group(P<0.05). Conclusion Dermal regeneration template can inhibit the transformation of FB to MFB and restrain the expressionof FN,integrin α2,β1,and TGF-β1 in fibroblasts which might reduce thepossibility of hypertrophyic scaring, and improve wound healing.
In order to explore further the regulatory factors to the potentiality in inducing osteogenesis by fibroblasts, the fibroblasts were isolated, and purified from human skin, and were grown in incubation in the media of EGF, IL-6, TNF-alpha and BMP2 at different concentrations for two weeks, then, the markers for osteogenic features were investigated by biochemistry, histochemistry and electron microscopic observations. It was found that the combined use of TNF-alpha and BMP2 could stimulate fibroblasts to secrete alkaline phosphatase, osteocalcin and collagen, and the morphological changes of the fibroblasts were also very striking. In the extracellular matrix, the collagen fibrils, with or without periodicity, were arranged regularly or randomly oriented, and numerous minute calcium granules were interspersed among them. The fibroblasts were interwoven one on top of another in the form of multilayer structure and on the surface, there were secreting granules and piling up of calcium crystals which coalessed steadily and increased in size in forming bony nodules. It was considered that TNF-alpha and BMP2 were capable of inducing the fibroblasts to form bone.
OBJECTIVE: To observe the curative effects of basic fibroblast growth factor (bFGF) on anus wound healing. METHODS: From April 1996 to December 2000, out of 109 patients with anus trauma, hemorrhoidectomy or fistula resection, 68 were treated with bFGF as the experimental group, while 41 were treated routinely as the control group. The healing of the wound, the general and local reaction were observed. RESULTS: The healing time of the experimental group was(17.00 +/- 1.54) days while that of the control group was(20.00 +/- 1.16) days (P lt; 0.01). Three weeks after operation, the healing rates of the experimental and control groups were 97.1% and 87.8%, respectively (P lt; 0.01). No general or local detrimental reactions were found in two groups. CONCLUSION: Local application of bFGF can accelerate the healing of anus wound, and the patients have little pain.
Porpose To investigate the optimal concentration of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) on DNA synthesis and their synergism indensity arrested human retinal pigment epithelial (RPE) cells. Methods Growth factor effects in cultured human RPE of the 6th generation were assessed by [3 H]-thymidine incorporation and radioautography. Results EGF and bFGF were potent stimulators when used alone,and their optimal concentrations were 10ng/ml in DMEM and 1ng/ml in 2% serum DMEM.When used in combination (10ng/ml EGF and 10ng/ml bFGF),they caused a significant enhancement of [3 H]-thymidine incorporation about 2.96 times. Conclusion EGF and bFGF were potent stimulators in RPE cells,and demonstrated synergism in their action. (Chin J Ocul Fundus Dis,1998,14:98-100)
Objective To review the recent researches of basic fibroblast growth factor (bFGF) in tendon tissue engineering. Methods Recentoriginal related literature was extensively reviewed and analyzed. Results bFGF played an important role in establishing standard tendon tissue engineering cell lines, inducing the compound and analysis of extracellular matrix, enhancing interactions between cells and extracellular matrix and accelerating tissue engineering materials’ neovascularization. Conclusion The progresses in increasing endogenetic bFGF expression, controlling the release of exogenous bFGF and improving the bioutilization of bFGF has laid foundation for wider use of bFGF in tendon tissue engineering.