Objective To study and compare the clinical efficacy between intravitreal conbercept injection and (or) macular grid pattern photocoagulation in treating macular edema secondary to non-ischemic branch retinal vein occlusion (BRVO). Methods Ninety eyes of 90 patients diagnosed as macular edema secondary to non-ischemic BRVO were enrolled in this study. Forty-eight patients (48 eyes) were male and 42 patients (42 eyes) were female. The average age was (51.25±12.24) years and the course was 5–17 days. All patients were given best corrected visual acuity (BCVA), intraocular pressure, slit lamp with preset lens, fluorescence fundus angiography (FFA) and optic coherent tomography (OCT) examination. The patients were divided into conbercept and laser group (group Ⅰ), laser group (group Ⅱ) and conbercept group (group Ⅲ), with 30 eyes in each group. The BCVA and central macular thickness (CMT) in the three groups at baseline were statistically no difference (F=0.072, 0.286;P=0.930, 0.752). Patients in group Ⅰ received intravitreal injection of 0.05 ml of 10.00 mg/ml conbercept solution (conbercept 0.5 mg), and macular grid pattern photocoagulation 3 days later. Group Ⅱ patients were given macular grid pattern photocoagulation. Times of injection between group Ⅰ and Ⅲ, laser energy between group Ⅰ and Ⅱ, changes of BCVA and CMT among 3 groups at 1 week, 1 month, 3 months and 6 months after treatment were compared. Results Patients in group Ⅰ and Ⅲ had received conbercept injections (1.20±0.41) and (2.23±1.04) times respectively, and 6 eyes (group Ⅰ) and 22 eyes (group Ⅲ) received 2-4 times re-injections. The difference of injection times between two groups was significant (P<0.001). Patients in group Ⅱ had received photocoagulation (1.43±0.63) times, 9 eyes had received twice photocoagulation and 2 eyes had received 3 times of photocoagulation. The average laser energy was (96.05±2.34) μV in group Ⅰ and (117.41±6.85) μV in group Ⅱ, the difference was statistical significant (P=0.003). BCVA improved in all three groups at last follow-up. However, the final visual acuity in group Ⅰ and group Ⅲ were better than in group Ⅱ (t=4.607, –4.603;P<0.001) and there is no statistical significant difference between group Ⅲ and group Ⅰ (t=–0.802,P=0.429). The mean CMT reduced in all three groups after treating for 1 week and 1 month, comparing that before treatment (t=–11.855, –10.620, –10.254;P<0.001). There was no statistical difference of CMT between group Ⅰand Ⅲ at each follow up (t=0.404, 1.723, –1.819, –1.755;P=0.689, 0.096, 0.079, 0.900). CMT reduction in group Ⅰ was more than that in group Ⅱ at 1 week and 1 month after treatments (t=–4.621, –3.230;P<0.001, 0.003). The CMT in group Ⅲ at 3 month after treatment had increased slightly comparing that at 1 month, but the difference was not statistically significant (t=1.995,P=0.056). All patients had no treatment-related complications, such as endophthalmitis, rubeosis iridis and retinal detachment. Conclusions Intravitreal conbercept injection combined with macular grid pattern photocoagulation is better than macular grid pattern photocoagulation alone in treating macular edema secondary to non-ischemic BRVO. Combined therapy also reduced injection times comparing to treatment using conbercept injection without laser photocoagulation.
ObjectiveTo systematically review the efficacy and safety of photodynamic therapy (PDT) and intravitreal vascular endothelial growth factor (VEGF) inhibitors in the treatment of polypoidal choroidal vasculopathy (PCV), and to investigate the primary treatment tentatively. MethodsA systematic search of Pubmed, Embase, the Cochrane Library and the Wanfang Data was performed to identify all comparative studies that compared the outcomes of PDT alone, intravitreal VEGF inhibitors alone and combined intravitreal VEGF inhibitors and photodynamic therapy. Outcomes of interest included the regression and recurrence rate of polypoidal lesions, best corrected visual acuity (BCVA), central retinal thickness (CRT), therapeutic times, and the occurrence rate of adverse events. 2 randomized controlled trials (RCT) and 19 non-RTCs were identified. According to treatment methods, the data extracted was classified to 3 groups, analyzed with odds ratio (OR), weighted mean difference (WMD) and 95%confidence interval (95%CI). ResultsMeta-analysis suggests that the regression rate of polypoidal lesions (OR=0.34, 0.07; 95%CI=0.13-0.88, 0.02-0.36) and BCVA (WMD=0.25, 0.11; 95%CI=0.14-0.36, 0.01-0.21) in combined therapy group were significantly better than those in PDT group and intravitreal VEGF inhibitors group (P < 0.05). The recurrence rate of polypoidal lesions in PDT group was significantly lower than intravitreal VEGF inhibitors group (OR=0.35, 95%CI=0.16-0.74, P=0.006). BCVA (P=0.025) and the occurrence rate of adverse events (OR=60.36, 95%CI=6.04-603.50, P=0.000 5) in intravitreal VEGF inhibitors group were significant better than PDT group. ConclusionsCombined treatment appeared to be superior to PDT alone or intravitreal VEGF inhibitors alone. Combined treatment takes priority over all others in the primary treatment of PCV.
The therapeutic effect of anti-vascular endothelial growth factor (VEGF) for neovascular age-related macular degeneration (nAMD) was determined by a number of factors. Comprehensive thorough analysis of clinical features, imaging results and treatment response can predict the potential efficacy and possible vision recovery for the patient, and also can optimize the treatment regime to make a personalized therapy plan. Precise medicine with data from genomics, proteomics and metabolomics study will provide more objective and accurate biology basis for individual precise treatment. The future research should focus on comprehensive assessment of factors affecting the efficacy of anti-VEGF therapy, to achieve individualized precise diagnosis and treatment, to improve the therapeutic outcome of nAMD.
ObjectiveTo observe the efficacy of adjuvant intravitreal injection of anti-vascular endothelial growth factor (VEGF) therapy for advanced Coats disease. MethodsThis study is a retrospective case series study. Fourteen patients (14 eyes), presenting Coats Stages 3B and 4 (8 and 6 eyes, respectively) were enrolled. All the patients were treated with adjuvant intravitreal anti-VEGF therapy. The intravitreal anti-VEGF injections varied from 1 to 7, with a median injections of 2.14. In 14 eyes, combined therapy was subretinal fluid drainage in 4 eyes, photocoagulation in 2 eyes, vitrectomy in 8 eyes. The follow-up period was ranged from 4 to 36 months, with a median follow-up of 18.8 months. Visual acuity and retinal reattachment were observed in follow up. ResultsAt last follow up, global suvival was 100.0% with no enucleation performed in any patient because of disease progression. Except for 2 children who were unable to cope with the visual acuity test, visual acuity was improved in 2 patients, stable in 8 patients, and decreased in 2 patients. 5 patients (35.7%) achieved in complete retinal reattachment, 3 patients (21.4%) were succeed in partial retinal reattachment, and the remain 6 patients(42.8%) failed in retinal reattachment. Two patients developed cataract after vitrectomy, and no other adverse reaction was observed during follow-up. ConclusionAnti-VEGF therapy combined with classic treatments in advanced Coats disease can keep or impove the visual acuity in most patients by reducing of subretinal exudation.
ObjectiveTo observe the clinical effect of microincision vitreoretinal surgery (VRS) assisted with intravitreal injection of ranibizumab (IVR) in severe proliferative diabetic retinopathy (PDR) treatment. MethodsThis is a prospective non-randomized controlled clinical study. A total of 60 patients (70 eyes) with severe PDR diagnosed were enrolled and divided into IVR group (31 patients, 35 eyes) and control group (29 patients, 35 eyes). IVR group patients received an intravitreal injection of 0.05 ml ranibizumab solution (10 mg/ml) first, and 3 or 4 days later they received 23G microincision VRS. Control group patients only received 23G microincision VRS. The follow-up time was 3 to 12 months with an average of (4.5±1.8) months. The logarithm of the minimal angle of resolution (logMAR) best corrected visual acuity (BCVA), intraocular pressure, the central retinal thickness (CRT) and retinal reattachment, and the incidence of postoperative complications were comparatively analyzed. ResultsThere was no topical and systemic adverse reactions associated with the drug after injection in IVR group. The incidence of post-operative vitreous hemorrhage (VH) in IVR group and control group was 8.6% and 28.6% at 1 week after surgery, 0.0% and 17.1% at 1 month after surgery, 0.0% and 8.6% at 3 month after surgery respectively. The differences were statistically significant for 1 week (χ2=4.63, P < 0.05) and 1 month (χ2=4.56, P < 0.05), but was not statistically significant for 3 months (χ2=0.24, P > 0.05). The mean post-operative logMAR BCVA of IVR group (0.81±0.40) and control group (1.05±0.42) have all improved than their pre-operative BCVA, the difference was statistically significant (t=12.78, 4.39; P < 0.05). The mean logMAR BCVA of IVR group is higher than BCVA of control group, the difference was statistically significant (t=-2.36, P < 0.05). The average post-operative CRT in IVR group was thinner than that of control group, the difference was statistically significant (t=-2.53, P < 0.05). The incidence of a transient high intraocular pressure in IVR group (14.3%) was lower than that in control group (34.3%), the difference was statistically significant (t=4.79, P < 0.05). The incidence of retinal reattachment (t=0.35), epiretinal membrane (χ2=0.97), neovascular glaucoma (χ2=0.51) was no difference between these two groups (P > 0.05). ConclusionThe minimally invasive VRS assisted by IVR treatment for severe PDR can effectively prevent postoperative VH, reduce CRT and improve visual acuity.
ObjectiveTo observe the clinical effect of intravitreal ranibizumab (IVR) combined with vitrectomy in treating proliferative diabetic retinopathy (PDR). MethodsThis is a prospective non-randomized controlled clinical study. A total of 62 patients (70 eyes) who underwent vitrectomy for PDR were enrolled and divided into IVR group (30 patients, 34 eyes) and control group (32 patients, 36 eyes).IVR group patients received an intravitreal injection of 0.05 ml ranibizumab solution (10 mg/ml) 3 or 5 days before surgery. The follow-up time was 3 to 18 months with an average of (4.5±1.8) months. The surgical time, intraoperative bleeding, iatrogenic retinal breaks, use of silicone oil, the best corrected visual acuity (BCVA) and the incidence of postoperative complications were comparatively analyzed. ResultsThe difference of mean surgical time (t=6.136) and the number of endodiathermy during vitrectomy (t=6.128) between IVR group and control group was statistically significant (P=0.000, 0.036). The number of iatrogenic retinal break in IVR group is 8.8% and control group is 27.8%, the difference was statistically significant (χ2=4.154, P=0.032). Use of silicone oil of IVR group is 14.7% and control group is 38.9%, the difference was statistically significant (χ2=5.171, P=0.023). The incidence of postoperative vitreous hemorrhage in 3 month after surgery was 11.8% and 30.6% respectively in IVR group and control group. The differences were statistically significant (χ2=3.932, P=0.047). The 6 month postoperative mean BCVA of IVR group and control group have all improved than their preoperative BCVA, the difference was statistically significant (t=4.414, 8.234; P=0.000).But there was no difference between the mean postoperative BCVA of two groups (t=0.111, P=0.190). There was no topical and systemic adverse reactions associated with the drug after injection in IVR group. ConclusionsMicroincision vitreoretinal surgery assisted by IVR for PDR shorten surgical time, reduces the intraoperative bleeding and iatrogenic retinal breaks, reduces the use of silicon oil and the postoperative recurrent vitreous hemorrhage. But there was no significant relationship between vision improvement and IVR.
Objective To observe the visual acuity change in patients with different patterns of optical coherence tomography (OCT) of diabetic macular edema (DME) after intravitreal ranibizumab injection and/or laser photocoagulation. Methods A retrospective observational case series. Seventy patients (99 eyes) with DME were enrolled. Best-corrected visual acuity (BCVA) was evaluated using the international vision test chart, and then convert the result to the logarithm of the minimum angle of resolution (logMAR). According to the morphological characteristics of OCT, the DME was divided into 3 patterns, including diffuse macular edema (DRT), cystoid macular edema (CME) and serous neuroepithelial layer detachment. The average follow-up was (80.43±74.89) days. The patients were divided into 3 groups according to the different treatments, including intravitreal ranibizumab injection group (group A, 21 patients, 25 eyes), intravitreal ranibizumab injection and laser photocoagulation group (group B, 23 patients, 26 eyes), laser photocoagulation group (group C, 26 patients, 48 eyes). The changes of absolute BCVA (ABCVA) and improved visual acuity were compared between different treatment groups and different OCT patterns. ABCVA = logMAR BCVA before treatment-logMAR BCVA after treatment. Improvement more than 0.3 of logMAR value was considered as improved visual acuity. Results There was no significant difference in ABCVA between different treatment groups (F=0.050,P>0.05). The improved visual acuity in group A and B were great than group C (χ2=5.645, 6.301;P<0.05). In group A, B and C, there was no significant difference in ABCVA and improved visual acuity between different OCT patterns (P>0.05). Improved visual acuity of DRT and CME eyes were higher in group A&B (70.59% and 50.00%) than in group C (26.47% and 14.29%), the difference was statistically significant (χ2=5.075, 4.453;P<0.05). Conclusions There is no obvious change of visual acuity in patients with different OCT patterns of DME after the same treatment by intravitreal ranibizumab injection and/or laser photocoagulation. The improved visual acuity is not consistent in same OCT patterns after different treatment.
Diabetic macular edema (DME) is a common ocular complication of diabetes patients. It mainly involve macular which is closely related with visual function, thus DME is one of the major reasons causing visual impairment or blindness for diabetes patients. How to reduce the visual damage of DME is always a big challenge in the ophthalmic practice. In the past three decades, there are tremendous developments in DME treatments, from laser photocoagulation, antiinflammation drugs to antivascular endothelial growth factor therapy. However, the mechanism of DME development is not yet completely clear; every existing treatment has its own advantages and weaknesses. Therefore DME treatment still challenges us to explore further to reduce the DME damages.