ObjectiveTo observe the imaging characteristics of optical coherence tomography angiography in macular telangiectasia type 2 (Mac-Tel 2). MethodsA retrospective case analysis. From October 2017 to June 2021, 11 patients (22 eyes) diagnosed as Mac-Tel type 2 by multi-modal imaging in Nanjing Medical University Eye Hospital were included in this study. There were 5 males (10 eyes) and 6 females (12 eyes). The age were 41.61±11.32 years old. All patients underwent the examinations of best corrected visual acuity, indirect ophthalmoscope, fundus color photography, fluorescein fundus angiography (FFA), optical coherence tomography (OCT), and OCT angiography (OCTA). The scope of 3 mm × 3 mm in macular area of eyes was scanned by OCTA. After automatic image processing, the system could provide the blood flow image of capillary layer, deep capillary layer, outer retina, choroidal capillary layer, and the B-scan image. The imaging characteristics were observed. ResultsAmong the 22 eyes, 14 eyes were in the early stage of the disease, and 8 eyes had secondary subretinal neovascularization (SRN) and/or choroidal neovascularization (CNV). FFA examination that in the early stage of the disease, the capillaries near the fovea were dilated, the blood vessels were stretched, and the late fluorescence was mainly stained; high-fluorescence leakage was seen when SRN and CNV were developed. OCTA examination showed that in the early stage of the disease, the temporal capillaries in the macular area were dilated and stretched, especially in the deep layer. The capillary space was enlarged, and the right-angled venules were seen to change and infiltrate into the deep layer; when the lesions invaded the outer retina, flower clusters-like SRN were seen; neovascularization was seen in the outer retina and choroidal capillary layer when CNV was developed. B-scan image showed that in the early stage of the disease, irregular weak reflex cavities and lamellar holes change between the neuroepithelial layers; secondary SRN and CNV showed strong little clumpy reflexes accompanied by abundant blood flow signals. ConclusionThe image characteristics of OCTA in the eyes of Mac-Tel 2 were dilated, stretched superficial and deep temporal capillaries in the macula area and right-angled changes in blood vessels.
Objective To investigate the molecular mechanisms by which the long non-coding RNA (lncRNA) MIR223HG affects the proliferation, migration and apoptosis of lung adenocarcinoma cells. MethodsDNA damaging agent Zeocin was used to treat human embryo lung cell (MRC-5) and lung cancer cell (A549 and H1299), and the expression of MIR223HG was tested by quantitative real-time polymerase chain reaction (qRT-PCR) analysis. Moreover, the ataxia-telangiectasia mutated (ATM) protein and ATM pathway downstream factor Cell cycle checkpoint kinase 2 (Chk2), p53 tumor suppressor protein (p53) in the lung cancer cell (A549 and H1299) with Zeocin were also tested by qRT-PCR. Cell transfection and Transwell migration assay, colony formation assays, apoptosis assays were performed to verify the role of ATM in the expression of MIR223HG in lung adenocarcinoma. ResultsThe expression of MIR223HG was reduced markedly in the lung cancer cells (A549 and H1299) compared with human embryo lung cell (MRC-5) after treated with Zeocin. ATM protein and its downstream factors Chk2, p53 involved in the process, and ATM regulated the expression of MIR223HG in the lung cancer cells with Zeocin. Futhermore, ATM joined in the processes that MIR223HG regulated the lung cancer cells proliferation, migration and apoptosis. Conclusions The expression of MIR223HG is related to the DNA damage response in the lung cancer, and MIR223HG regulates lung cancer cells proliferation, migration and apoptosis by ATM/Chk2/p53 pathway. MIR223HG may be a potential therapeutic target for lung adenocarcinoma treatment.
Retinopathy of prematurity, familial exudative vitreoretinopathy and Coats disease are the most common neonates and infants retinal vascular diseases, which may lead to severe visual damage because of either tractional retinal detachment caused by the proliferation of pathogenic neovascularization, or exudative retinal detachment due to the extremely leakage from abnormal retinal vessels. Classic treatment is retinal laser photocoagulation which could destroy these abnormal vessels or reduce non vascular areas to diminish the growth of new vessels, however the side effects induced by laser it self such as visual field damage, hemorrhage, retinal tear, fail to control the progression of the disease make the laser treatment hard to improve the vision of these young patients. Anti-vascular endothelial growth factor (VEGF) agents have been widely applied in various adult retinal and choroidal vascular diseases, they are even possible to replace the pan retinal photocoagulation in proliferative diabetic retinopathy, while there are still many unsolved problems in the applying in neonates and infants retinal vascular diseases, like dosage, timing, retreatment and systemic side effects. We should realize the importance of selecting the laser photocoagulation and anti-VEGF for neonates and infants retinal vascular diseases.
Idiopathic parafoveal telangiectasis (IPT) is a retinal vascular disease which is characterized by foveal and parafoveal telangiectasia. The main clinical manifestations are retinal telangiectasis, reduced retinal transparency, retinal venular dilatation, yellow exudation, retinal pigment epithelial lesions, retinal hemorrhage, macular atrophy, macular hole or lamellar hole, subretinal neovascularization and retinal detachment. According to the clinical characteristics and features of fluorescein angiography, IPT can be divided into 3 types and 6 subtypes. Laser photocoagulation, photodynamic therapy, and intravitreal injection of glucocorticoid or anti-vascular endothelial growth factor drugs, can reduce the macular edema and neovascularization. However, due to the unclear etiology of IPT, the existing treatment measures are not specific for its etiology. We need to work hard to understand further the clinical features and pathogenesis of IPT and search the targeted treatments based on its pathogenesis mechanism.
Cardiovascular disease is a severe threat to human health and life. Among many risk factors of cardiovascular disease, genetic or gene-based ones are drawing more and more attention in recent years. Accumulated evidence has demonstrated that the loss or mutation of ataxia telangiectasia mutated (ATM) gene can result in DNA damage repair dysfunctions, telomere shortening, decreased antioxidant capacity, insulin resistance, increased lipid levels, etc., and thus can promote the occurrence of cardiovascular risk factors, such as aging, atherosclerosis and metabolic syndrome. In this review, we discusses the possible mechanisms between ATM gene and cardiovascular risk factors, which could be helpful to the related research and clinical application.
ObjectiveTo investigate the efficacy and safety of traditional laser photocoagulation, laser combined with intravitreal injection of anti-vascular endothelial factor (anti-VEGF) drugs and intravitreal injection of anti-VEGF drugs alone in Coats disease. MethodsThe patients diagnosed as Coats disease stage 2B-3A2 in Department of Ophthalmology, Eye and ENT Hospital of Shanghai Medical College of Fudan University from December 2016 to November 2019 were included in this study. Patients were divided into three groups, including laser group, combined group and drug group, according to the different treatment. In the laser group, the initial treatment was traditional laser photocoagulation alone. In the drug group, the anti-VEGF drug was injected into vitreous once a month for three months. The initial treatment of the eyes in the combined group was laser combined with intravitreal injection of anti-VEGF drugs, or laser treatment within 1 week after anti-VEGF drug treatment. The follow-up time was more than 6 months, and best-corrected visual acuity (BCVA), ultra-wide-angle fundus photography, and fluorescein fundus angiography were performed during follow-up. The treatment efficiency, subretinal fluid (SRF), macular edema, BCVA and complications were compared among the three groups. ResultsAmong 60 patients (60 eyes), there were 55 males (55 eyes) and 5 females (5 eyes), with the mean age of 17.1±2.0 years. Among 60 eyes, there were 26 eyes in 2B stage, 23 eyes in 3A1 stage, and 11 eyes in 3A2 stage. Twenty patients (20 eyes) was in the laser group, combined group and drug group, respectively. After the initial treatment of all eyes in the drug group, the abnormal blood vessels did not regress significantly; the absorption and increase of SRF were 4 (20.0%, 4/20) and 5 (25.0%, 5/20) eyes, respectively. Supplementary laser therapy was given to 16 eyes, and vitrectomy (PPV) was given to 4 eyes. Among the 16 eyes treated by laser, 10 eyes were effective (50.0%, 10/20); vitreous hemorrhage, fibrous membrane hyperplasia, and complicated cataract occurred in 1, 1, and 2 eyes during the treatment, respectively, and PPV was given again in all eyes. Recurrent and persistent macular edema occurred in 4 and 1 eyes, respectively. Among the eyes in the combined group, treatment were effective in 11 eyes (55.0%, 11/20); 5, 2, and 2 eyes had SRF, fibrous membrane hyperplasia, and complicated cataract during the treatment, and PPV was given again; the edema was repeated and persisted in 1 eye, respectively. Among the affected eyes in the laser group, 15 eyes (75.0%, 15/20) were treated effectively; 2, 2, and 1 eyes developed a large number of vitreous hemorrhage, fibrous membrane hyperplasia, and complicated cataract during the treatment, and PPV was given again. ConclusionsAnti-VEGF drugs alone are ineffective in the treatment of Coats disease, and ablation of other abnormal blood vessels is needed. In the treatment of Coats disease, anti-VEGF drugs can not only promote the absorption of SRF, but also may lead to its increase, and the application should be cautious.
Macular pigment (MP) is composed of lutein, zeaxanthin, and meso-zeaxanthin, which accumulate mainly at the macula. MP has antioxidant function and can filtering blue wave. Measurement of MP is about its optical density, that is, macular pigment optical density (MPOD). This review summarizes the function and clinical use of MP and MPOD. Researches has show that MPOD is related to some ocular disease such as age-related macular degeneration, macular telangiectasia type 2, diabetic retinopathy, Stargardt disease et al. MPOD can be used in the judgment of clinical diagnosis, treatment effect. The specific mechanism of MP metabolism in the retina and in the pathogenesis of the disease, genotype specific nutritional therapy of xanthophyll, the establishment of a database combined with artificial intelligence and the rapid and convenient MP determination are all issues of great contention that need to be resolved.
ObjectiveTo investigate macular microvascular abnormalities in eyes with subfoveal fibrotic nodules secondary to Coats' disease. MethodsA cross-sectional study. From January 1, 2018 to July 30, 2021, 45 eyes of 45 patients diagnosed with Coats' disease with or without subfoveal fibrotic nodules in Eye and ENT Hospital, Shanghai Medical College of Fudan University were included in this study. There were 40 eyes in 40 males and 5 eyes in 5 females. All were under 21 years old. According to the presence or absence of subfoveal fiber nodules, the patients were divided into fibrotic group (26 cases, 26 eyes) and non-fibrotic group (19 cases, 19 eyes). Optical coherence tomography angiography was used to scan 3 mm×3 mm or 6 mm×6 mm macular area of both eyes. The software of the device automatically processed the images. The presence of FAZ edge anastomotic vascular arch ring breakage and abnormal microvascular branch (AMB) in the foveal avascular zone (FAZ) were observed. ResultsIn 26 eyes of fibrosis group, AMB originating from the parafoveal retinal capillary network was observed, which grew into and destroyed the integrity of the vascular arch ring at the edge of FAZ. AMB was crisscrossing and winding, and its curvature expands. B-scan images showed the blood flow signal in the subfoveal fiber nodule, and the blood flow signal traversed between the inner retina and the fiber nodule in 23 eyes (88.46%, 23/26). In the non-fibrosis group, all the vascular abnormalities were characterized by capillary dilation and defect, and no breakage of FAZ anastomotic vascular arch ring or AMB was observed. ConclusionsIn Coats' disease with subfoveal fiber nodules, staggered and dilated AMBs emerge from the parafoveal vascular network, grow into and destroy the integrity of the vascular arch ring at the edge of FAZ, and grow down longitudinally into the fiber nodules.