west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "氧化应激" 66 results
  • Thioredoxin-1: A potential target for prevention of heart-related reactive oxygen species injury

    Reactive oxygen species (ROS) play an important role in the pathogenesis of various cardiovascular diseases, by leading to cell apoptosis and thus causing organic injuries. Anti-ROS therapy is highly anticipated, but currently, there is still no appropriate prevention method. Studies have shown that thioredoxin (Trx), being a kind of significant endogenous antioxidant system, has excellent antioxidant capacity. Promotion of Trx can reduce key biomolecules to eliminate ROS or regulate many signaling pathways, thus resisting ROS injuries, which may be a new anti-ROS strategy. Therefore, we reviewed the research progress of Trx in cardiac antioxidant therapy to discuss its potential and possibility to be a target for prevention of heart-related ROS injury.

    Release date:2024-01-04 03:39 Export PDF Favorites Scan
  • Oxidative Stress in Airway Inflammation and Remodeling of Obese Mice with Asthma

    Objective To evaluate the effects of oxidative stress in the airway inflammation and remodeling of high-fat diet induced obese mice with asthma. Methods Sixty female C57 /6J mice were randomly divided into four groups, ie. an asthma group, an obese group, an obese asthma group, and a control group. The mice in the asthma group were sensitized and challenged with ovalbumin ( OVA) and fed with normal diets. The mice in the obese group were fed with high-fat diets. The mice in the obese asthma group were sensitized and challenged as the asthma group, and fed as the obese group. The mice in the control group were sensitized and challenged with normal saline and fed with normal diets. After 12 weeks, bronchoalveolar lavage fluid ( BALF) were collected for total and differential cell count. IL-6 and 8-iso-prostaglandin F2α ( 8-iso-PGF2α) in lung tissue homognate were detected by ELISA. The pathological changes were observed under light microscope by HE staining. Meanwhile the remodeling indices including total bronchial wall area ( WAt) , smooth muscle area ( WAm) , and bronchial basement membrane perimeter ( Pbm) were measured. Results In comparison with the obese group and the asthma group, the leukocytes and eosinophils in BALF, WAt/ Pbm, and IL-6 in lung tissue increased significantly in the obese asthma group ( P lt; 0. 05) . 8-iso-PGF2αin lung tissue increased in sequence of the control group, the obese group, the asthma group, and the obese asthma group significantly. Pearson correlation analysis showed that leukocyte in BALF, WAt/ Pbm, and IL-6 were in positive correlation with 8-iso-PGF2α( r =0. 828, 0. 863, 0. 891, respectively, P lt;0. 01) . Conclusion Oxidative stress is involved in the airway inflammation and remodeling of obese asthma mice with high-fat diets.

    Release date:2016-08-30 11:56 Export PDF Favorites Scan
  • Effect of dl-3-n-Butylphthalide on apoptosis of retinal müller cells induced by hydrogen peroxide

    ObjectiveTo observe the protective effect of dl-3-n-Butylphthalide (NBP) on apoptosis of retinal Müller cells induced by hydrogen peroxide (H2O2).MethodsHuman retinal Müller cells cultured in vitro were divided into normal control group, model group (H2O2 group) and experimental group (H2O2+NBP group). The cells in the H2O2 group and H2O2+NBP group were cultured with 200 μmol/L H2O2 for 2 h. Then the culture solution of the H2O2 group replace with complete medium and the H2O2+NBP group replace with complete medium containing 1 μmol/L NBP. The normal control group was a conventional cultured cells. Müller cells were identified by immunofluorescence staining. Hematoxylin-eosin (HE) staining was used to observe the apoptosis morphological changes. MTT assay was used to detect the activity of of retinal Müller cells after after 24 h and 48 h of NBP intervention. Hoechst33258 staining was used to observe the apoptosis. LIVE/DEAD ® cell activity/cytotoxicity kit was used to detect cell viability. Dichlorofluorescein diacetate (DCFH-DA) + endoplasmic reticulum (ER) red fluorescent probe (ER-Tracker Red) double staining was used to observe the expression level of reactive oxygen species (ROS) in ER of cells. One-way ANOVA combined with Dunnett statistical method were used for data analysis.ResultsHE staining showed that the number of cells in H2O2+NBP group was higher than that in H2O2 group. MTT assay showed that after 24 h and 48 h of NBP intervention, the differences in cell viability between the normal control group and the H2O2 group, the H2O2 group and the H2O2+NBP group were statistically significant (t=28.96, 3.658, 47.58, 20.33; P<0.001, 0.022). The results of Hoechst33258 showed that the nuclear nucleus of a few cells in the H2O2+NBP group was crescent-shaped and the nuclear fragmentation was reduced, and the blue fluorescence of the remaining cells was uniform. The LIVE/DEAD ® cell activity/cytotoxicity kit showed that the number of dead cells with red fluorescence in the H2O2 group increased significantly, and the number of viable cells with green fluorescence decreased significantly. In the H2O2+NBP group, the number of viable cells with green fluorescence increased, and the number of dead cells with red fluorescence decreased. The double staining results of DCFH-DA+ER-Tracker Red showed that the green fluorescence intensity of H2O2 group was significantly enhanced; the green fluorescence intensity of H2O2+NBP group was lower than that of H2O2 group.ConclusionNBP alleviates H2O2-induced apoptosis of human retinal Müller cells by inhibiting ROS production.

    Release date:2018-09-18 03:28 Export PDF Favorites Scan
  • Effect of S-adenosyl-l-methionine on oxidative stress and alveolar septal cell apoptosis in mice with emphysema after smoking cessation

    Objective To investigate the effect of S-adenosyl-l-methionine (SAM) on oxidative stress and alveolar septal cell apoptosis in mice with emphysema after smoking cessation. Methods Twenty-two male SPF C57BL/6J mice aged 6 - 8 weeks were randomly divided into 4 groups, ie. a healthy control group, an emphysema group, a smoking cessation group, and a SAM intervention for 8 weeks after smoking cessation group, with 8 mice in each group. The mice model of emphysema was established by intraperitoneal injection of cigarette smoke extract (CSE) combined with cigarette smoke exposure. Smoking cessation started after the emphysema model was successfully constructed and lasted for 8 weeks. After smoking cessation, the mice in SAM intervention groups were intraperitoneally injected with SAM mg·kg–1·d–1 for 8 weeks. The right lung sections of the mice were taken for hematoxylin-eosin staining to observe pathological changes, and the mean linea rintercept (MLI) and mean alveola rnumber (MAN) of lungs were measured. The concentrations of malondialdehyde (MDA), superoxide-dismutase (SOD) and glutathione (GSH) in alveolar lavage fluid of left lung were detected by spectrophotometry. Terminal deoxynucleotidyl transferasemediated dUTP nick end labeling (TUNEL) technique was carried out to detect the alveolar septal cells apoptosis. Results MLI, apoptosis index of alveolar septal cell and MDA concentration in bronchoalveolar lavage fluid (BALF) increased significantly in the emphysema group compared with healthy controls, increased significantly in the smoking cessation group compared with the emphysema group, and decreased in the SAM intervention group compared with the smoking cessation group (all P<0.05). GSH concentration and SOD activity in BALF and MAN was significantly lower in the emphysema group compared with the healthy control group, significantly lower in the smoking cessation group compared with the emphysema group, and significantly higher in the SAM intervention group compared with the smoking cessation group (all P<0.05). Conclusions Lung histopathology and apoptosis of alveolar septal cells in emphysema mice progress continuously after smoking cessation. SAM may reduce oxidative stress and improve apoptosis of alveolar septal cells, so as to protect emphysema mice after smoking cessation.

    Release date:2024-11-20 10:31 Export PDF Favorites Scan
  • The Effects of MK-801 on Central Nervous Antioxidative Stress System in Rats with Obstructive Jaundice

    ObjectiveTo investigate the effects of MK-801 on antioxidant system activity in the central nervous system of rats with obstructive jaundice. MethodsTwenty rats were divided into four groups: sham operation group, control group, MK-801 low dose group, and MK-801 high dose group. The control group, MK-801 low dose group, and MK-801 high dose group were the obstructive jaundice model groups (OJ groups). From the first day after operation, MK-801 low dose group were processed intraperitoneal injection of MK-801 0.025 mg/(kg·d) and MK-801 high dose group were processed intraperitoneal injection of MK-801 0.25 mg/(kg·d). Meanwhile, sham operation group and control group were injected the same volume of normal saline everyday for 10 days. Three days after operation, rats' tail vein blood were collected for examining the direct bilirubin DBIL) and total bile acids (TBA) in order to determine whether the model were successfully established. And malondialdehyde (MDA), catalase (CAT), total superoxide dismutase (T-SOD), and total antioxidant capacity (T-AOC) were determined on the 10th day to evaluate the oxdative status of the rats. Results①Obstructive jaundice model was established successfully.②The content of MDA in control group, MK-801 low dose group and MK-801 high dose group were significantly increased than the sham operation group, and there was statistical difference (P < 0.05). The content of MDA decreased in MK-801groups compared with the control group (P < 0.05).③Compared with the sham operation group, the activity of CAT in control group decreased significantly (P < 0.05). The activity of CAT in the MK-801 groups increased compared with the control group with significant difference (P < 0.05). There was no statistical difference on the activity of CAT between MK-801 low dose group and high dose group (P > 0.05).④Compared with sham operation group, the activity of T-SOD was decreased significantly in control group with statistical significance (P < 0.05). The activity of T-SOD were increased in the MK-801 groups compared with control group with significant difference (P < 0.05), but the activity of T-SOD was decreased significantly in the high dose group than the low dose group (P < 0.05).⑤In the Oj groups, the T-AOC were significantly increased compared with the sham operation group, and there was statistical significance (P < 0.05). The T-AOC in MK-801 groups were increased compared with the control group with statistical significance (P < 0.05), but there was no statistical difference between the MK-801 groups. Conciusions Oxidative stress exists when obstructive jaundice occurs, and obstructive jaundice can aggravate the oxidative stress damage in the rats' central nervous system and cause increasing expression of enzymes such as CAT which enhance antioxidant capacity of the whole body. MK-801 can decrease lipid peroxidation, and increase activity of CAT and SOD as well as T-AOC in CNS of jaundice rats. But High dose of MK-801 has no better effect than low dose of MK-801. On the contrary, activity of T-SOD decrease in the high dose group than in the low dose group. Further research is needed on the specific mechanism.

    Release date: Export PDF Favorites Scan
  • Mogroside regulates the oxidative stress response of retinal pigment epithelial cells induced by H2O2 through silent information regulator of transcription 1/nuclear factor erythroid-2-related actor 2 signaling pathway

    Objective To observe and preliminarily explore the effect of mogroside on oxidative stress of retinal pigment epitheliaum (RPE) cells induced by hydrogen peroxide (H2O2) and its possible mechanism. MethodsA experimental study. The RPE cells were divided into control group, H2O2 group, silent information regulator of transcription 1 (SIRT1) inhibitor EX527 group (EX527 group), mogroside group, mogroside+EX527 group. Methyl thiazolete trazolium method was used to detect cell survival rate. Flow cytometry was used to detect cell apoptosis rate. 2',7'-dichlorodihydrofluorescein diacetate fluorescent probe method, xanthine method and enzyme-linked immunosorbent assay method were used to detect the level of reactive oxygen species (ROS), superoxide dismutase (SOD) activity and malondialdehyde (MDA) content in cells respectively. Real-time quantitative polymerase chain reaction and Western blot were used to detect relative expressions of SIRT1, nuclear factor erythroid-2-related actor 2 (Nrf2), heme oxygenase-1 (HO-1) mRNA and protein in cells. One-way ANOVA was used for comparison among groups. The pairwise comparison between groups was tested by the least significant difference t test. Results Compared with the control group, the H2O2 group cell survival rate decreased, the apoptosis rate increased, the ROS level in the cells increased, the SOD activity decreased, the MDA content increased, and the relative expression of SIRT1, Nrf2, HO-1 mRNA and protein decreased (P<0.05). Compared with H2O2 group, the cell survival rate decreased, apoptosis rate increased, the cell ROS level increased, SOD activity decreased, MDA content increased, SIRT1, Nrf2, HO-1 mRNA and protein expression decreased in EX527 group (P<0.05); the cell survival rate increased, apoptosis rate decreased, ROS level decreased, SOD activity increased, MDA content decreased, and the relative expression of SIRT1, Nrf2, HO-1 mRNA and protein increased in mogroside group (P<0.05). Compared with the mogrosides group, the cell survival rate decreased, the apoptosis rate increased, the level of ROS increased, SOD activity decreased, MDA content increased, SIRT1, Nrf2, HO-1 mRNA and protein decreased in mogrosides+EX527 group (P<0.05). ConclusionsMogrosides can alleviate the oxidative stress response of visual RPE cells induced by H2O2, promote cell proliferation, and reduce cell apoptosis. Mogrosides may exert antioxidant effects by activating the SIRT1/Nrf2 signaling pathway.

    Release date:2023-08-17 08:49 Export PDF Favorites Scan
  • 慢性支气管炎发病机制研究进展

    慢性支气管炎(chronic bronchitis,CB)作为常见的气道炎症,其发病机制涉及炎症反应及相关通路、氧化应激、黏液高分泌、气道表面脱水及气道重塑等多种方式,这些机制都与慢性支气管炎的发生发展、慢性迁延等密切相关。其中炎症反应是 CB 发生发展的核心机制,除其他炎症相关因子包括肺泡表面活性蛋白、瘦素等参与外,炎症介质包括前列腺素类、激肽系统、晚期糖基化终末产物受体、活化细胞内丝裂原蛋白激酶、蛋白酶激活受体等均在炎症发生发展中起重要作用。氧化应激为炎症反应的中心环节,黏液高分泌、气道表面脱水、气道重塑等则为炎症的继发表现,其机制的阐明均对 CB 管理及转归具有重要指导意义。如何阐明各参与因素之间的关系,实现从基础研究向临床实践的转化,将成为现今一大课题。该文就慢性支气管炎相关发病机制研究进展进行了综述。

    Release date:2017-04-19 10:17 Export PDF Favorites Scan
  • Effects of butylphthalide on hydrogen peroxide induced retinal pigment epithelial cells injury

    ObjectiveTo investigate the protective effect of butylphenyphthalein (NBP) on RPE apoptosis induced by H2O2.MethodsThe human RPE cell line (human ARPE-19 cell line) were used as the experimental cells and were divided as control group, model group, NBP group. Complete medium was used in control group. The model group was stimulated with 200 μmol/L H2O2 for 2 h, and the cells were cultured in complete medium. The NBP group was cultured with 200 μmol/L H2O2 and 1 μmol/L NBP for 2 h. After changing the medium, complete medium was combined with 1 μmol/L NBP to continue the culture of the cells. Cell viability were detected by MTT assay while the morphology of RPE were observed by HE staining. Moreover, Hoechst 33258 was used to detect RPE cell apoptosis. Mitochondrial membrane potential (JC-1) staining were performed to monitor changes in cell membrane potential and the characteristic change of apoptosis in RPE cells. Furthermore, 2′,7′-Dichlorofluorescin diacetate (DCFH-DA) staining were used to analyze the effect of NBP treatment on the expression of ROS. The effect of NBP on the expression of Heme oxygenase-1(HO-1) was analyzed by cellular immunofluorescence and western blotting.ResultsThe results of MTT assay showed that the cells were cultured for 24 and 48 hours, cell viability of control group (t=17.710, 13.760; P<0.000 1, <0.000 1) and treatment group (t=4.857, 9.225; P=0.000 7, <0.000 1) were stronger than that of model group, and the difference was statistically significant. HE staining and Hoechst33258 staining showed that compared with the control group, the number of cells in the model group was significantly less, and the cell morphology was incomplete. Compared with the model group, the number of cells in the treatment group was significantly increased, and the cell morphology was better. The results of JC-1 assay showed that the number of apoptotic cells in the model group was significantly higher than that in the control group, and the number of apoptotic cells in the treatment group was significantly lower than that in the model group. DCFH-DA staining showed that the ROS accumulation in the model group was more than that in the control group, and the ROS accumulation in the treatment group was less than that in the model group. Immunostaining observation showed that the HO-1 fluorescence intensity of the cells in the treatment group was significantly higher than that of the control group, and the difference was statistically significant (t=10.270, P=0.000 5). Western blot analysis showed that NBP up-regulated the expression level of HO-1 in a time-dependent manner. The relative expression of HO-1 at 4, 8, and 12 h of NBP showed a clear increase trend compared with 0 h, and the difference was statistically significant (F=164.91, P<0.05).ConclusionsOxidative stress injury can down-regulate the viability of RPE cells and induce apoptosis. NBP can increase the antioxidant capacity of RPE cells, reduce cell damage and inhibit cell apoptosis by up-regulating HO-1 expression.

    Release date:2019-11-19 09:24 Export PDF Favorites Scan
  • Effect of cryptotanshinone on airway inflammation and oxidative stress induced by cigarette smoke in mice

    Objectives To investigate the effects of cryptotanshinone (CTS) on cigarette smoke (CS) -induced airway inflammation and oxidative stress in mice and the possible mechanisms. Methods BALB/c mice were exposed to CS for 4 weeks to establish airway inflammation model. CTS was given by intraperitoneal injection before CS exposure at a dosage of 30 mg·kg−1·d−1 or 15 mg﹒kg−1·d−1. Bronchoalveolar lavage fluid (BALF) was acquired for cell counting and detection of pro-inflammatory cytokine [interleukine (IL)-17, monocyte chemotactic protein (MCP)-1, tumor necrosis factor (TNF)-α] levels. Lung tissue was collected for histological examination, superoxide dismutase (SOD) activities, malondialdehyde (MDA) levels, immunohistochemistry and polymerase chain reaction for Muc5ac detection, and western blot for lectin-like oxidized low-density lipoprotein-1 receptor (LOX-1) and nuclear factor (NF)-κB. Results CTS administration attenuated CS exposure induced thickening of the airway epithelium, peribronchial inflammatory cell infiltration, and lumen obstruction, increased numbers of total cells, macrophages, and neutrophils, and decreased the releases of IL-17, MCP-1, TNF-α in BALF of mice. CS exposure could induce the elevation in MDA levels and decrease in SOD activities, markers of oxidative stress. CTS could attenuate these changes. CTS also attenuated CS induced up-regulation of the protein levels of LOX-1 and phosphorylated p65, down-regulation of the levels of NF-κB inhibitor α. Conclusion CTS alleviates the airway inflammation, oxidative stress and mucus hypersecretion induced by CS, which may be through the regulation of LOX-1 and NF-κB signaling pathway.

    Release date:2022-07-29 01:40 Export PDF Favorites Scan
  • Experimental study on promotion of peripheral nerve regeneration by selenium-methylselenocysteine

    Objective To investigate the feasibility of selenium-methylselenocysteine (SMC) to promote peripheral nerve regeneration and its mechanism of action. Methods Rat Schwann cells RSC96 cells were randomly divided into 5 groups, which were group A (without any treatment, control group), group B (adding 100 μmol/L H2O2), group C (adding 100 μmol/L H2O2+100 μmol/L SMC), group D (adding 100 μmol/L H2O2+200 μmol/L SMC), group E (adding 100 μmol/L H2O2+400 μmol/L SMC); the effect of SMC on cell proliferation was detected by MTT method, and the level of oxidative stress was detected by immunofluorescence for free radicals [reactive oxygen species (ROS)] after determining the appropriate dose group. Thirty-six 4-week-old male Sprague Dawley rats were randomly divided into 3 groups, namely, the sham operation group (Sham group), the sciatic nerve injury group (PNI group), and the SMC treatment group (SMC group), with 12 rats in each group; the rats in the PNI group were fed with food and water normally after modelling operation, and the rats in the SMC group were added 0.75 mg/kg SMC to the drinking water every day. At 4 weeks after operation, the sciatic nerves of rats in each group were sampled for neuroelectrophysiological detection of highest potential of compound muscle action potential (CMAP). The levels of inflammatory factors [interleukin 17 (IL-17), IL-6, IL-10 and oxidative stress factors catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA)] were detected by ELISA assay. The luxol fast blue (LFB) staining was used to observe the myelin density, fluorescence intensity of glial fibrillary acidic protein (GFAP) and myelin basic protein (MBP) was observed by immunofluorescence staining, and myelin morphology was observed by transmission electron microscopy with measurement of axon diameter. Western blot was used to detect the protein expressions of p38 mitogen-activated protein kinases (p38MAPK), phosphorylated p38MAPK (p-p38MAPK), heme oxygenase 1 (HO-1), and nuclear factor erythroid 2-related factor 2 (Nrf2). ResultsMTT assay showed that the addition of SMC significantly promoted the proliferation of RSC96 cells, and the low concentration could achieve an effective effect, so the treatment method of group C was selected for the subsequent experiments; ROS immunofluorescence test showed that group B showed a significant increase in the intensity of ROS fluorescence compared with that of group A, and group C showed a significant decrease in the intensity of ROS fluorescence compared with that of group B (P<0.05). Neuroelectrophysiological tests showed that the highest potential of CMAP in SMC group was significantly higher than that in PNI and Sham groups (P<0.05). ELISA assay showed that the levels of IL-6, IL-17, and MDA in PNI group were significantly higher than those in Sham group, and the levels of IL-10, SOD, and CAT were significantly lower; the levels of IL-6, IL-17, and MDA in SMC group were significantly lower than those in PNI group, and the levels of IL-10, SOD, and CAT were significantly higher (P<0.05). LFB staining and transmission electron microscopy showed that the myelin density and the diameter of axons in the SMC group were significantly higher than those of the PNI group and the Sham group (P<0.05). Immunofluorescence staining showed that the fluorescence intensity of GFAP and MBP in the SMC group were significantly stronger than those in the PNI group and Sham group (P<0.05). Western blot showed that the relative expressions of Nrf2 and HO-1 proteins in the SMC group were significantly higher than those in the PNI group and Sham group, and the ratio of p-p38MAPK/p38MAPK proteins was significantly higher in the PNI group than that in the SMC group and Sham group (P<0.05). Conclusion SMC may inhibit oxidative stress and inflammation after nerve injury by up-regulating the Nrf2/HO-1 pathway, and then inhibit the phosphorylation of p38MAPK pathway to promote the proliferation of Schwann cells, which ultimately promotes the formation of myelin sheaths and accelerates the regeneration of peripheral nerves.

    Release date:2024-06-14 09:42 Export PDF Favorites Scan
7 pages Previous 1 2 3 ... 7 Next

Format

Content