Reactive oxygen species (ROS) play an important role in the pathogenesis of various cardiovascular diseases, by leading to cell apoptosis and thus causing organic injuries. Anti-ROS therapy is highly anticipated, but currently, there is still no appropriate prevention method. Studies have shown that thioredoxin (Trx), being a kind of significant endogenous antioxidant system, has excellent antioxidant capacity. Promotion of Trx can reduce key biomolecules to eliminate ROS or regulate many signaling pathways, thus resisting ROS injuries, which may be a new anti-ROS strategy. Therefore, we reviewed the research progress of Trx in cardiac antioxidant therapy to discuss its potential and possibility to be a target for prevention of heart-related ROS injury.
To aggressively proliferate and metastasize, cancer cells are in extreme need of energy supply and nutrients. Therefore, a promising cancer therapy strategy is developed to target its hallmark feature of metabolism. Recent findings revealed the regulatory role of caveolin-1 (Cav-1), a structural protein of caveolae, in cancer metabolism. And low Cav-1 expression in tumor stroma was proved to be a central player of cancer malignant phenotype. Here, we summarized the progressions of studies on Cav-1, mitochondria and cancer metabolism to indicate that the altered metabolism induced by Cav-1 and mitochondria association is a major cause of cancer malignant phenotype.
ObjectiveTo observe the effect of interleukin-8 (IL-8) on the adhesion and migration of retinal vascular endothelial cells (RCEC). MethodsA cell experiment. Human RCEC (hRCEC) was divided into normal control group (N group), advanced glycation end product (AGE) treatment group (AGE group), and AGE-induced combined IL-8 antagonist SB225002 treatment group (AGE+SB group). The effect of AGE on IL-8 expression in hRCEC was observed by Western blot. The effect of SB225002 on hRCEC migration was observed by cell scratch assay. The effects of SB225002 on leukocyte adhesion and reactive oxygen species (ROS) on hRCEC were detected by flow cytometry. Student-t test was performed between the two groups. One-way analysis of variance was performed among the three groups. ResultsCompared with group N, the expression level of IL-8 in cells of AGE group was significantly increased, with statistical significance (t=25.661, P<0.001). Compared with N group and AGE+SB group, cell mobility in AGE group was significantly increased (F=29.776), leukocyte adhesion number was significantly increased (F=38.159, 38.556), ROS expression level was significantly increased (F=22.336), and the differences were statistically significant (P<0.05). ConclusionIL-8 antagonist SB225002 may down-regulate hRCEC adhesion and migration by inhibiting ROS expression.
ObjectiveTo investigate the molecular mechanism by which metastasis-associated protein 3 (MTA3) participates in glioma resistance through reactive oxygen species. Methods Protein expression in glioma stem cells (GSCs) and non-GSCs was detected using Western blotting. GSCs included U87 and SHG44 cells, while non-GSCs included U87s and SU-2 cells. After overexpressing MTA3, U87 and SHG44 cells were divided into Lv-scr and Lv-MTA3 groups. The self-renewal capacity of glioma cells was assessed through a neurosphere formation assay. Cell survival fractions were examined following exposure to 0, 2, 4, 6, 8, and 10 Gy X-ray irradiation under normoxic or hypoxic conditions. Apoptosis and reactive oxygen species expression were analyzed using flow cytometry. Immunofluorescence staining was performed to detect the stem cell markers CD133 and nestin, as well as the differentiation markers glial fibrillary acidic protein (GFAP, for astrocytes) and neuronal class Ⅲ β-tubulin. Results In GSCs, MTA3 expression was lower in the U87s and SU-2 groups. After MTA3 overexpression, Lv-MTA3 expression was higher in U87s and SU-2 compared to the Lv-scr group. Under normoxic or hypoxic conditions, U87 and SU-2 showed greater radioresistance compared to glioma cell lines U87 and SHG44. Compared to non-GSCs, basal reactive oxygen species formation was reduced in GSCs, while reactive oxygen species generation was increased in non-GSCs. Following exposure to different doses of X-rays under normoxic or hypoxic conditions, GSCs with MTA3 overexpression exhibited greater radiosensitivity than those with stable integration. Additionally, MTA3 overexpression slightly increased the oxygen enhancement ratio (OER) in GSCs. MTA3 overexpression reduced the immunoreactivity of CD133 and nestin in both stem cell lines, and increased immunofluorescence staining of GFAP and neuronal class Ⅲ β-tubulin, with statistically significant differences (P<0.05). Conclusions MTA3 is downregulated in GSCs. Overexpression of MTA3 reduces the radioresistance and stemness of GSCs both in vitro and in vivo. MTA3 plays a crucial role in regulating the radiosensitivity and stemness of GSCs through reactive oxygen species.
Nuclear factor-erythroid 2-related factor 2 (Nrf2) is an important factor for cells to resist oxidative stress and electrophilic attack. It is involved in the formation and control of oxidative stress defense pathways. It is associated with oxidative stress-related diseases, including cancer, neurodegenerative diseases, cardiovascular diseases and aging, and is a potential pharmacological target for the treatment of chronic diseases. This article will review the important role of Nrf2 in the regulation of cell proliferation, including direct regulation of cell proliferation, regulation of reactive oxygen species, intracellular metabolism, regulation of mitochondrial function, cell lifespan and inflammatory response. The aim is to provide a theoretical basis for further research on how to use Nrf2 to regulate cell proliferation.
Epilepsy is a heterogeneous disease with a very complex etiological mechanism, characterized by recurrent and unpredictable abnormal neuronal discharge. Epilepsy patients mainly rely on oral antiseizure medication (ASMs) the for treatment and control of disease progression. However, about 30% patients are resistance to ASMs, leading to the inability to alleviate and cure seizures, which gradually evolve into refractory epilepsy. The most common type of intractable epilepsy is temporal lobe epilepsy. Therefore, in-depth exploration of the causes and molecular mechanisms of seizures is the key to find new methods for treating refractory epilepsy. Mitochondria are important organelles within cells, providing abundant energy to neurons and continuously driving their activity. Neurons rely on mitochondria for complex neurotransmitter transmission, synaptic plasticity processes, and the establishment of membrane excitability. The process by which the autophagy system degrades and metabolizes damaged mitochondria through lysosomes is called mitophagy. Mitophagy is a specific autophagic pathway that maintains cellular structure and function. Mitochondrial dysfunction can produce harmful reactive oxygen species, damage cell proteins and DNA, or trigger programmed cell death. Mitophagy helps maintain mitochondrial quality control and quantity regulation in various cell types, and is closely related to the occurrence and development of epilepsy. The imbalance of mitophagy regulation is one of the causes of abnormal neuronal discharge and epileptic seizures. Understanding its related mechanisms is crucial for the treatment and control of the progression of epilepsy in patients.
ObjectiveTo investigate the effects of targeted regulation of SMAD9 expression by bone morphogenetic protein 4 (BMP4) on Müller cell migration, reactive oxygen species (ROS) generation and vascular endothelial growth factor (VEGF) expression. MethodsMüller cells cultured in vitro were divided into normal control group, BMP4 group, BMP4+ no-load plasmid group (BMP4+NC group) and BMP4+SMAD9 small interference plasmid group (BMP4+siSMAD9). Cells in BMP4 group, BMP4+NC group and BMP4+siSMAD9 group were induced by adding 100 ng/ml BMP4 into cell medium for 24 h. Subsequently, BMP4+NC group was transfected with empty plasmid. BMP4+siSMAD9 group was transfected with SMAD9 small interference plasmid for 48 h. The effect of BMP4 on Müller cell migration was determined by cell scratch test. The effect of BMP4 on the production of ROS in Müller cells was detected by flow cytometry. Western blots and real-time quantitative fluorescence polymerase chain reaction (qPCR) were used to detect the relative mRNA expression levels of glutamine synthetase (GS) and glial fibrinoacidic protein (GFAP) in Müller cells. VEGF expression in Müller cells was detected by immunofluorescence. One-way analysis of variance was used to compare groups. ResultsThe results of cell scratch test showed that the cell mobility of BMP4+siSMAD9 group was significantly lower than that of BMP4 and BMP4+NC group, and the difference was statistically significant (F=68.319, P<0.001). Flow cytomethods showed that the level of ROS in BMP4+siSMAD9 group was significantly lower than that in BMP4 and BMP4+NC group, and the difference was statistically significant (F=52.158, P<0.001). Western blot and qPCR results showed that the protein levels of GS and GFAP (F=42.715, 36.618) and mRNA relative expression levels (F=45.164, 43.165) in BMP4+siSMAD9 group were significantly lower than those in BMP4 and BMP4+NC group. The difference was statistically significant (P<0.01). The results of immunofluorescence detection showed that the intracellular VEGF fluorescence intensity in BMP4 group and BMP4+NC group was significantly higher than that in BMP4+siSMAD9 group, and the difference was statistically significant (F=46.384, P<0.05). ConclusionTargeted regulation of SMAD9 expression by BMP4 can up-regulate VEGF expression and promote the migration and ROS production of Müller cells.
Objective To investigate the antioxidant and osteogenic induction capabilities of calcium phosphate nanoflowers (hereinafter referred to as nanoflowers) in vitro at different concentrations. Methods Nanoflowers were prepared using gelatin, tripolyphosphate, and calcium chloride. Their morphology, microstructure, elemental composition and distribution, diameter, and molecular constitution were characterized using scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and energy-dispersive spectroscopy. Femurs and tibias were harvested from twelve 4-week-old Sprague Dawley rats, and bone marrow mesenchymal stem cells (BMSCs) were isolated and cultured using the whole bone marrow adherent method, followed by passaging. The third passage cells were identified as stem cells by flow cytometry and then co-cultured with nanoflowers at concentrations of 0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.2, and 3.6 mg/mL. Cell counting kit 8 (CCK-8) assay was performed to screen for the optimal concentration that demonstrated the best cell viability, which was subsequently used as the experimental concentration for further studies. After co-culturing BMSCs with the screened concentration of nanoflowers, the biocompatibility of the nanoflowers was verified through live/dead cell staining, scratch assay, and cytoskeleton staining. The antioxidant capacity was assessed by using reactive oxygen species (ROS) fluorescence staining. The in vitro osteoinductive ability was evaluated via alkaline phosphatase (ALP) staining, alizarin red staining, and immunofluorescence staining of osteocalcin (OCN) and Runt-related transcription factor 2 (RUNX2). All the above indicators were compared with the control group of normally cultured BMSCs without the addition of nanoflowers. Results Scanning electron microscopy revealed that the prepared nanoflowers exhibited a flower-like structure; transmission electron microscopy scans discovered that the nanoflowers possessed a multi-layered structure, and high-magnification images displayed continuous atomic arrangements, with the nanoflower diameter measuring (2.00±0.25) μm; energy-dispersive spectroscopy indicated that the nanoflowers contained elements such as C, N, O, P, and Ca, which were uniformly distributed across the flower region; Fourier transform infrared spectroscopy analyzed the absorption peaks of each component, demonstrating the successful preparation of the nanoflowers. Through CCK-8 screening, the concentrations of 0.8, 1.2, and 1.6 mg/mL were selected for subsequent experiments. The live/dead cell staining showed that nanoflowers at different concentrations exhibited good cell compatibility, with the 1.2 mg/mL concentration being the best (P<0.05). The scratch assay results indicated that the cell migration ability in the 1.2 mg/mL group was superior to the other groups (P<0.05). The cytoskeleton staining revealed that the cell morphology was well-extended in all concentration groups, with no significant difference compared to the control group. The ROS fluorescence staining demonstrated that the ROS fluorescence in all concentration groups decreased compared to the control group after lipopolysaccharide induction (P<0.05), with the 1.2 mg/mL group showing the weakest fluorescence. The ALP staining showed blue-purple nodular deposits around the cells in all groups, with the 1.2 mg/mL group being significantly more prominent. The alizarin red staining displayed orange-red mineralized nodules around the cells in all groups, with the 1.2 mg/mL group having more and denser nodules. The immunofluorescence staining revealed that the expressions of RUNX2 and OCN proteins in all concentration groups increased compared to the control group, with the 1.2 mg/mL group showing the strongest protein expression (P<0.05). Conclusion The study successfully prepares nanoflowers, among which the 1.2 mg/mL nanoflowers exhibits excellent cell compatibility, antioxidant properties, and osteogenic induction capability, demonstrating their potential as an artificial bone substitute material.