Surgical bioprosthetic valve in the mitral position typically degenerates in 10-15 years, when intervention is required again. In the past, redo surgical mitral valve replacement has been the only treatment choice for such patients suffering from bioprosthetic valve failure, despite the even higher risk associated with redo open-heart surgery. In recent years, transcatheter valve-in-valve implantation in the mitral position has evolved as an reasonable alternative to redo surgery for the treatment of surgical mitral bioprosthetic valve failure. Here we report an 81-year-old female patient with surgical mitral bioprosthetic valve failure, who successfully underwent valve-in-valve transcatheter mitral valve replacement via the transfemoral-transseptal approach. The procedure was successful owing to comprehensive CT imaging work-up, despite the technical challenges associated with bilateral giant atria and small left ventricle.
ObjectiveTo explore the short-term follow-up clinical effect of transcatheter valve-in-valve implantation treatment for mitral bioprosthesis deterioration.MethodsThe single center data of elderly patients with mitral valve bioprosthetic dysfunction who received transapical J-Valve intervention between January 2019 and May 2020 were reviewed and summarized. After the informed consent was signed, single lumen endotracheal intubation was performed under general anesthesia in hybrid operating room. The left intercostal small incision was used to explore the apical area. Fluoroscopy and three-dimensional esophageal ultrasound were used to guide the puncture needle. Then the guide wire entered the left atrium through the mitral valve biological valve. The catheter was exchanged, and the rigid support wire was exchanged. The reverse loaded J-Valve system was guided and implanted into the biological mitral valve with beating heart. The appropriate implantation depth was adjusted, and stent valve was released under rapid pacing. Post balloon dilation of the valve was performed if necessary.ResultsFrom January 2019 to May 2020, transcatheter J-Valve implantation was completed in 20 patients with mitral valve dysfunction and high-risk evaluation of routine thoracotomy and cardiopulmonary bypass (the Society of Thoracic Surgeon score above 6). In terms of the type of the the mitral bioprosthesis, there were 6 cases of Hancock valves, 7 cases of Perimount valves, 6 cases of Epic valves, and 1 case of Baxiter valve. In terms of the size of the the mitral bioprosthesis, there were 2 cases of size 29 valves, 11 cases of size 27 valves, and 7 cases of size 25 valves. One valve fell into the left ventricle at early stage. One patient had mild valve displacement during operation, and a second valve was implanted at the same time. The success rate of valve-in-valve implantation was 95%. The length of stay in intensive care unit was less than 6 h in 5 cases, 6-24 h in 13 cases, 24-48 h in 1 case, and more than 48 h in 1 case. No patient’s postoperative mitral regurgitation was moderate or above. The mean mitral valve pressure gradient was (5.2±2.3) mm Hg (1 mm Hg=0.133 kPa). Patients recovered well after the valve-in-valve implantation treatment, with no death within postoperative one month. One patient died of infection and multiple organ failure during follow-up after one month. Other patients recovered smoothly without serious complications.ConclusionsThe clinical effect of J-Valve intervention in the treatment of mitral valve bioprosthetic dysfunction through apical approach is good. The implantation can be completed under beating heart, avoiding cardiopulmonary bypass and routine thoracotomy cardiac arrest, which is worthy of further observation and follow-up.
Objective To investigate the biological and biomechanical characteristics of acellular porcine aortic valve with dye mediated photo oxidation so that a new and better bioprosthetic valve materials can be obtained. Methods Thirty porcine aortic valves were divided into three groups with random number table. Acellular valves (n=10) were stabilized by dye mediated photo oxidation in dye mediated photo oxidation group; acellular valves (n=10) were stabilized by glutaraldehyde in glutaraldehyde group; and acellular valves (n=10) were acellularized only in acellular valves group. Thickness, appearance, histology, water content, shrinkage temperature, breaking strength and soluble protein level of acellular porcine aortic in three groups were tested respectively. Results There were light blue, soft, flexible and unshrinking valves in dye mediated photo oxidation group. Compared to valves in glutaraldehyde group, valves in dye mediated photo oxidation group had lighter thickness(0.26±0.09mm vs. 0.38±0.08mm,Plt;0.05), more water content(86.30%±4.03% vs. 71.10%±3.23%,Plt;0.05), and lower shrinkage temperature (76.30±0.70℃ vs. 87.70±0.30℃,Plt;0.05); while these indexes had no statistically significant differences compared to those in acellular valves group. At the same time, compared to valves in acellular valves group, valves in dye mediated photo oxidation group had more breaking strength(17.33±2.65 mPa vs. 9.11±0.95 mPa,Plt;0.05) and lower soluble protein level(0.039%±0.013% vs. 0.107%±0.024%,Plt;0.05); while these indexes had no statistically significant differences compared to those in glutaraldehyde group. Conclusion Acellular porcine aortic valve stabilized by dye mediated photo oxidation has nice biological and biomechanical characteristics.
For patients with aortic valve disease who require replacement of their native valve, surgical aortic valve replacement (SAVR) has been the standard of care. Due to the hemorrhage and thromboembolic risks of long-term anticoagulation therapy for mechanical prosthesis, bioprosthetic aortic valve replacement (AVR) has a trend to be used in younger patients, which raising the concern for the durability of bioprosthetic valves. The newly published 5-year outcomes of PERIGON trial, with no structural valve deterioration, again demonstrated the favorable durability of the new generation bioprosthetic valves, further providing the evidence of using bioprosthetic AVR in younger patients. At the meantime, the rapid progress of transcatheter aortic valve implantation (TAVI) has brought a new treatment option. For younger patients with low risks, choosing SAVR or TAVI becomes a critical decision. This paper reviews the outcomes of PERIGON trial and its implications to the clinical practice and research of bioprosthetic AVR.
ObjectiveTo investigate the risk or protective factors for systemic embolism (SE) in patients undergoing bioprosthetic mitral valve replacement (MVR). Methods Between October 2002 and March 2013, a total of 146 patients underwent bioprosthetic MVR. There were 78 females and 68 males with mean age of 66.23±5.17 years. The primary reason of mitral valve disease was mitral valve degeneration or mitral valve leaflet prolapse in 40 patients, rheumatic heart valve disease in 101 patients, ischemic heart disease in 3 patients, infectious endocarditis in 1 patient, and mechanical peri-valvular leak in 1 patient. All patients were given anticoagulation therapy with warfarin for 3 months. Thereafter, antithrombotic medication was prescribed according to the surgeon's preference. The patients were followed up by telephone or mail for postoperative condition and SE events. ResultsSixteen (10.96%) patients developed SE events, including cerebral infarction in 13 cases, transient ischemic attack (TIA) in 2 cases and spleen infarction in 1 case. A total of 16 patients died during follow-up. The 1-year, 3-year, 5-year and 10-year cumulative survival rate after surgery was 95.2%, 93.6%, 92.5% and 88.3% respectively. Patients with SE events had lower rate of left atrial appendage obliteration than those without SE events (25.0% vs. 78.6%, P=0.015). Multivariate analysis showed that left atrial appendage obliteration was an independent protective factor for SE in patients undergoing bioprosthetic MVR (P=0.041). ConclusionLeft atrial appendage obliteration is a major protective factor for systemic embolism in patients undergoing bioprosthetic MVR no matter what antithrombotic medication is taken.
ObjectiveTo investigate the influence of mechanical and biological valves on clinical benefits of elderly patients with valvular heart disease.MethodsWe retrospectively analyzed the clinical data of 280 elderly patients with valvular heart disease treated by valve replacement between 2008 and 2014 year. The patients were divided into two groups by tendency score matching including a group A with biological valves and a group B with mechanical valves. Finally, there were 96 patients in each group. There were 43 males and 53 females at age of 64.41±6.52 years in the group A, 44 males and 52 females at age of 64.07±6.20 years in the group B.ResultsThe bleeding rate of skin and mucosa of the group B was significantly higher than that of the group A (P<0.05). There was no statistical difference in mortality within 30 days after operation, all-cause mortality, re-hospitalization rate, re-valve replacement rate, combined atrial flutter/atrial fibrillation ratio, drug use, incidence of cerebral infarction, cerebral hemorrhage, new peripheral vascular embolism and visceral hemorrhage, heart function (NYHA) classification, the cumulative survival rate of all the patients during follow-up (P=0.63), or the cumulative survival rate of the patients with no thrombus/hemorrhage (P=0.75) between the two groups (P>0.05).ConclusionMechanical valve replacement and bioprosthetic valve replacement in the treatment of valvular heart disease in the elderly can achieve similar clinical benefits and both have clinical application value.
Abstract: Objective To compare the change of left heart funct ion in pat ients w ith bio logical valves replacement of small ao rt ic roo t w ith mechanical valve rep lacement, and to find w hether there is p ro sthesis-patient mismatch (PPM ) or not after operation. Methods Left ventricular ejection fraction (LV EF ) , left ventricular fractional shortening (LVFS) , left vent ricular mass index, the indexed effective orifice area (EOA I) , and peak pressure gradients across aortic valve in 20 patients with small aortic root (≤21mm in diameter) receiving biological valves rep lacement (biological valves group ) were studied by Doppler echocardiography before the operation and 6 months to 1 year after operation. The results were compared with those of 20 patients who received mechanical valves replacement (mechanical valves group ). Results Comparing with those before operation, there was a significant increase in LVEF, LV FS, EOAI of all patients 6 months to 1 year after operation . There was a significant reduction in the left ventricular mass index, peak pressure gradients across aortic valve in all patients. EOAI of all patients were between 0.88 cm2/m2 and 1. 32 cm 2/m 2. LVEF, LVFS, EOAI, left ventricular mass index, and peak pressure gradients across aortic valve between biological valves group and mechanical valves group (79% ±8% vs. 81%±10%; 43%±9% vs. 37%±8%; 1. 11±0. 14 vs. 0. 92±0. 11; 89. 10±16. 70g/m 2 vs. 95. 30±15.10 g/m 2; 18. 80±12. 60 mmHg vs. 22. 30±12. 00 mmHg) showed no significant difference 6 months to 1 year after operation (P gt;0.05). Conclus ion Patients with small aortic root receiving biological valves have a significant increase in the left heart function, and have no PPM.
ObjectiveTo study the biocompatibility of bioprosthetic heart valve material with a non-glutaraldehyde-based treatment, and to provide the safety data for the clinical application. MethodsAll the tests were conducted according to GB/T16886 standards. The in vitro cytotoxicity was determined by methyl thiazolyl tetrazolium assay. Fifteen guinea pigs were divided into a test group (n=10) and a control group (n=5) in the skin sensitization test. Three New Zealand white rabbits were used in the intradermal reactivity test. Five sites on both sides of the rabbit back were set as test sites and control sites, respectively. In the acute systemic toxicity test, a total of 20 ICR mice were randomly assigned to 4 groups: a test group (polar medium), a control group (polar medium), a test group (non-polar medium) and a control group (non-polar medium), 5 in each group. Forty SD rats were divided into a test group (n=20) and a control group (n=20) in the subchronic systemic toxicity test. ResultsThe viability of the 100% extracts of the bioprosthetic heart valve material with a non-glutaraldehyde-based treatment was 75.2%. The rate of positive reaction was 0.0%. The total intradermal reactivity test score was 0. There was no statistical difference in the body weight between the test group and control group in the acute systemic toxicity test. There was no statistical difference in the body weight, organ weight, organ weight/body weight ratio, blood routine test or blood biochemistry between the test group and control group in the subchronic systemic toxicity test. ConclusionThe bioprosthetic heart valve material with a non-glutaraldehyde-based treatment has satisfying biocompatibility, which conforms to relevant national standards. The material might be a promising material for application in valve replacement.