west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "电刺激" 75 results
  • Design of an Embedded Stroke Rehabilitation Apparatus System Based on Linux Computer Engineering

    A realizaton project of electrical stimulator aimed at motor dysfunction of stroke is proposed in this paper. Based on neurophysiological biofeedback, this system, using an ARM9 S3C2440 as the core processor, integrates collection and display of surface electromyography (sEMG) signal, as well as neuromuscular electrical stimulation (NMES) into one system. By embedding Linux system, the project is able to use Qt/Embedded as a graphical interface design tool to accomplish the design of stroke rehabilitation apparatus. Experiments showed that this system worked well.

    Release date: Export PDF Favorites Scan
  • Expression of Myocardial Specificity Markers MEF-2C and Cx43 in Rat Bone Marrow-derived Mesenchymal Stem Cells Induced by Electrical Stimulation In Vitro

    Bone marrow-derived mesenchymal stem cells (BMSCs) for repairing damaged heart tissue are a new kind of important treatment options because of their potential to differentiate into cardiomyocytes. We in this experiment investigated the effect of different electrical stimulation time on the expression of myocardial specificity gene and protein in rat bone marrow mesenchymal stem cells (rBMSCs) in vitro. The rBMSCs of second or third generation were randomly divided into three groups, i.e. electrical stimulation (ES) group, 5-Azacytidine (5-Aza) group and the control group. The rBMSCs in the ES groups with complete medium were exposed to 2 V, 2 Hz, 5 ms electrical stimulation for 0.5 h, 2 h, 4 h, and 6 h respectively every day for 10 days. Those in the 5-Aza group were induced by 5-Aza (10 μmol/L) for 24 h, and then cultured with complete medium for 10 days. Those in the control group were only cultured with complete medium, without any treatment, for 10 days. The rBMSCs' morphological feature in each group was observed with inverted phase microscope. The mRNA expression of myocyte-specific enhancer factor 2C (MEF-2C) and connexin 43 (Cx43) were examined with Real-Time quantitative PCR and the protein expression of MEF-2C, Cx43 were detected with Western Blot method. The results showed that the mRNA expression level of the MEF-2C, Cx43 and the protein expression level of MEF-2C, Cx43 were significantly higher in the ES group and 5-Aza group than those in the relative control group (P < 0.05). It suggests that electrical stimulation could play a part of role in the induction of the rBMSCs to differentiate into the cariomyocyte-like cells in vitro and the effectiveness of the electrical stimulation with 2 h/d had the best in our experiement. But the mechanism how electrical stimulation promotes the differentiation of rBMSC into cardiomyocyte is still unclear.

    Release date: Export PDF Favorites Scan
  • CLINICAL ANALYSIS OF ELECTRICAL STIMULATION THRESHOLD OF NERVE FASCICLE DURING SELECTIVE POSTERIOR RHIZOTOMY

    Abstract This experiment was to study the feasibility from direct observation of muscle contraction of the lower extremity fromelectrical stimulation threshold of nerve fascicle in identifying the Iα intrafusal afferent fibers during selective posterior rhizotomy (SPR) and to investigate the clinical relationship between the muscle spasm and the electrical stimulation of nerve fascicles. The electrical stimulation threshold of all nerve fascicles in 36 cases during SPR were analysed statistically. The results showed that there was a significant difference between the electrical stimulation threshold of the severed nerve fascicles and intact nerve fascicles no matter the nerve root or each posterior nerve rootlet was examined. It was simple and reliable for surgeons to identify correctly the Iα intrafusal afferent fibers intraoperatively from direct observation of the electrical stimulation threshold of nerve fascicle.

    Release date:2016-09-01 11:10 Export PDF Favorites Scan
  • Effects of transcutaneous electrical acupoint stimulation on heart rate variability: a meta-analysis

    Objective To systematically review the effect of percutaneous acupoint electrical stimulation (TEAS) on heart rate variability (HRV). Methods The PubMed, Embase, Ovid MEDLINE, Cochrane Library, CNKI, WanFang Data, VIP, and CBM databases were electronically searched to collect randomized controlled trials (RCTs) on the effects of percutaneous acupoint electrical stimulation on heart rate variability from inception to February 28, 2023. Two reviewers independently screened the literature, extracted data, and assessed the risk of bias of the included studies. Meta-analysis was then performed using RevMan 5.4 software. Results A total of 14 RCTs involving 719 patients were included. The results of meta-analysis showed that SDNN (MD=12.95, 95%CI 9.18 to 16.72, P<0.01), RMSSD (MD=1.81, 95%CI 0.10 to 3.53, P=0.04), pNN50 (MD=1.75, 95%CI 1.02 to 2.48, P<0.01), HF (SMD=0.27, 95%CI 0.01 to 0.52, P=0.04), LF/HF (MD=−0.07, 95%CI −0.12 to −0.03, P<0.01), ln-LF (MD=0.63, 95%CI 0.25 to 1.01, P<0.01), ln-HF (MD=1.05, 95%CI 0.60 to 1.49, P<0.01), mean RR (MD=−11.86, 95%CI −21.77 to −1.96, P=0.02), and HR (SMD=−0.43, 95%CI −0.66 to −0.20, P<0.01) all showed improvement compared with the control group. However, there were no significant differences between the two groups in LF (SMD=0.15, 95%CI −0.10 to 0.40, P=0.23), LF norm (SMD=0.24, 95%CI −0.10 to 0.58, P=0.16) or HF norm (SMD=0.25, 95%CI −0.47 to 0.97, P=0.5). TEAS on PC6: SDNN, pNN50, HF, LF/HF, LF norm, HF norm, ln-LF, ln-HF, and HR all showed improvement compared with the control group. However, there were no significant differences between the two groups in RMSSD, LF, or RR interval. Conclusion This study supports the improvement of heart rate variability by transcutaneous acupoint electrical stimulation and PC6 acupoint selection. Due to the limited quantity and quality of the included studies, more high-quality studies are needed to verify the above conclusion.

    Release date: Export PDF Favorites Scan
  • Design of functional array electrode stimulation system with surface electromyography feedback

    In order to solve the problems of insufficient stimulation channels and lack of stimulation effect feedback in the current electrical stimulation system, a functional array electrode electrical stimulation system with surface electromyography (sEMG) feedback was designed in this paper. Firstly, the effectiveness of the system was verified through in vitro and human experiments. Then it was confirmed that there were differences in the number of amperage needed to achieve the same stimulation stage among individuals, and the number of amperage required by men was generally less than that of women. Finally, it was verified that the current required for square wave stimulation was smaller than that for differential wave stimulation if the same stimulation stage was reached. This system combined the array electrode and sEMG feedback to improve the accuracy of electrical stimulation and performed the whole process recording of feedback sEMG signal in the process of electrical stimulation, and the electrical stimulation parameters could change with the change of the sEMG signal. The electrical stimulation system and sEMG feedback worked together to form a closed-loop electrical stimulation working system, so as to improve the efficiency of electrical stimulation rehabilitation treatment. In conclusion, the functional array electrode electrical stimulation system with sEMG feedback developed in this paper has the advantages of simple operation, small size and low power consumption, which lays a foundation for the introduction of electrical stimulation rehabilitation treatment equipment into the family, and also provides certain reference for the development of similar products in the future.

    Release date:2021-02-08 06:54 Export PDF Favorites Scan
  • Research on characteristics of brain functional network in stroke patients during convalescent period under transcranial direct current stimulation

    Transcranial direct current stimulation (tDCS) is an emerging non-invasive brain stimulation technique. However, the rehabilitation effect of tDCS on stroke disease is unclear. In this paper, based on electroencephalogram (EEG) and complex network analysis methods, the effect of tDCS on brain function network of stroke patients during rehabilitation was investigated. The resting state EEG signals of 31 stroke rehabilitation patients were collected and divided into stimulation group (16 cases) and control group (15 cases). The Pearson correlation coefficients were calculated between the channels, brain functional network of two groups were constructed before and after stimulation, and five characteristic parameters were analyzed and compared such as node degree, clustering coefficient, characteristic path length, global efficiency, and small world attribute. The results showed that node degree, clustering coefficient, global efficiency, and small world attributes of brain functional network in the tDCS group were significantly increased, characteristic path length was significantly reduced, and the difference was statistically significant (P < 0.05). It indicates that tDCS can improve the brain function network of stroke patients in rehabilitation period, and may provide theory and experimental basis for the application of tDCS in stroke rehabilitation treatment.

    Release date:2021-08-16 04:59 Export PDF Favorites Scan
  • Application of scalp electroencephalogram in treatment of refractory epilepsy with vagus nerve stimulation

    Electroencephalogram (EEG) has been an important tool for scientists to study epilepsy and evaluate the treatment of epilepsy for half a century, since epilepsy seizures are caused by the diffusion of excessive discharge of brain neurons. This paper reviews the clinical application of scalp EEG in the treatment of intractable epilepsy with vagus nerve stimulation (VNS) in the past 30 years. It mainly introduces the prediction of the therapeutic effect of VNS on intractable epilepsy based on EEG characteristics and the effect of VNS on EEG of patients with intractable epilepsy, and expounds some therapeutic mechanisms of VNS. For predicting the efficacy of VNS based on EEG characteristics, EEG characteristics such as epileptiform discharge, polarity of slow cortical potential changes, changes of EEG symmetry level and changes of EEG power spectrum are described. In view of the influence of VNS treatment on patients’ EEG characteristics, the change of epileptiform discharge, power spectrum, synchrony, brain network and amplitude of event-related potential P300 are described. Although no representative EEG markers have been identified for clinical promotion, this review paves the way for prospective studies of larger patient populations in the future to better apply EEG to the clinical treatment of VNS, and provides ideas for predicting VNS efficacy, assessing VNS efficacy, and understanding VNS treatment mechanisms, with broad medical and scientific implications.

    Release date:2020-10-20 05:56 Export PDF Favorites Scan
  • An efficient and practical electrode optimization method for transcranial electrical stimulation

    Transcranial electrical stimulation (TES) is a non-invasive neuromodulation technique with great potential. Electrode optimization methods based on simulation models of individual TES field could provide personalized stimulation parameters according to individual variations in head tissue structure, significantly enhancing the stimulation accuracy of TES. However, the existing electrode optimization methods suffer from prolonged computation times (typically exceeding 1 d) and limitations such as disregarding the restricted number of output channels from the stimulator, further impeding their clinical applicability. Hence, this paper proposes an efficient and practical electrode optimization method. The proposed method simultaneously optimizes both the intensity and focality of TES within the target brain area while constraining the number of electrodes used, and it achieves faster computational speed. Compared to commonly used electrode optimization methods, the proposed method significantly reduces computation time by 85.9% while maintaining optimization effectiveness. Moreover, our method considered the number of available channels for the stimulator to distribute the current across multiple electrodes, further improving the tolerability of TES. The electrode optimization method proposed in this paper has the characteristics of high efficiency and easy operation, potentially providing valuable supporting data and references for the implementation of individualized TES.

    Release date:2024-10-22 02:33 Export PDF Favorites Scan
  • Research on enhancement of mental rotation ability based on transcranial direct current stimulation

    Transcranial direct current stimulation (tDCS) is a non-invasive low-current brain stimulation technique, which is mainly based on the different polarity of electrode stimulation to make the activation threshold of neurons different, thereby regulating the excitability of the cerebral cortex. In this paper, healthy subjects were randomly divided into three groups: anodal stimulation group, cathodal stimulation group and sham stimulation group, with 5 subjects in each group. Then, the performance data of the three groups of subjects were recorded before and after stimulation to test their mental rotation ability, and resting state and task state electroencephalogram (EEG) data were collected. Finally, through comparative analysis of the behavioral data and EEG data of the three groups of subjects, the effect of electrical stimulation of different polarities on the three-dimensional mental rotation ability was explored. The results of the study found that the correct response time/accuracy rate and the accuracy rate performance of the anodal stimulation group were higher than those of the cathodal stimulation and sham stimulation groups, and there was a significant difference (P < 0.05). The alpha wave power analysis found that the mental rotation mainly activates the frontal lobe, central area, parietal lobe and occipital lobe. In the anodal stimulation group, the alpha wave power changed significantly in the frontal lobe and occipital lobe (P < 0.05). The results of this paper show that anodal stimulation group can improve the mental rotation ability of the subjects to a certain extent. The results of this paper can provide important theoretical support for further research on the mechanism of tDCS on mental rotation ability.

    Release date:2021-10-22 02:07 Export PDF Favorites Scan
  • EXPERIMENTAL STUDY ON THE PROMOTIVE EFFECT OF PERCUTANEOUS ELECTRICAL STIMULATION ON PERIPHERAL NERVE REGENERATION

    To observe the effect of percutaneous electrical stimulation on peripheral nerve regeneration, a model was created on the sciatic nerves of 56 rats from either sectioned and followed by direct anastomosis or clamping of the nerve. The indices, such as conducting velocity of nerve, maximal induced action potential of muscle, growth speed of nerve, rateof axon crossing anastomosis site, number of muscular fiber on transverse area and weight of muscle by autocontrol were compared. In this study, 36 rats were divided into two groups, 24 rats in Group 1 and 12 rats in Group 2. In Gourp 1, both sciatic nerves were sectioned and was anastomozed 4 weeks later. One side of the nerve was stimulated with percutaneous electric current, the other side was served as control. In Group 2, both sides of nerves were clamped and the electical stimulationwas carried out on one side. The parameters of the electric current were 2~5HZ, 0.4m/s, 24~48V. The electrophysiological and histomorphological features were observed 1 to 6 weeks after operation. The results showed that in the stimulatedside, the indices were all superior to that of the control side. This suggestedthat electrical stimulation could promote peripheral nerve regeneration.

    Release date:2016-09-01 11:10 Export PDF Favorites Scan
8 pages Previous 1 2 3 ... 8 Next

Format

Content