OCT angiography (OCTA) is a fast, noninvasive and quantifiable new technique, which is especially suitable for long-term follow-up in patients with hereditary retinochoroidal degeneration, such as retinitis pigmentosa, Best vitelliform macular dystrophy, adult onset foveomacular vitelliform dystrophy, doyne honeycomb retinal dystrophy, choroideremia and Stargardt disease. During the follow-up, clinicians can find the subtle signs that explain disease development from the blood flow imaging, quantitatively describe the vascular density, timely detect and treat choroidal neovascularization. It is significant to explore the etiology and monitor the course of these diseases. With the development of more treatments for these diseases, OCTA parameters can also be used as indicators to evaluate and compare different therapeutic effects. In the future, more quantitative indicators of OCTA will be applied to evaluate the course of hereditary retinochoroidal degeneration, and provide valuable basis for early diagnosis and treatment.
The human hereditary retinal degeneration is one of the main cause of irreversible blindness in the world. the mechanisms leading to retinal photoreceptor degeneration are not entirely clear. However, microglia acting as innate immune monitors are found to be activated early in retinal degeneration in many retinitis pigmentosa animal models. These activated microglia are involved in phagocyte rod cell fragments of degenerated retina, and also produce high levels of cytotoxic substances such as pro-inflammatory cytokines and chemokines, which aggravate the death of adjacent healthy photoreceptor cells. It suggests that microglia activation plays an important role in photoreceptor degeneration. At the same time, a series of studies have confirmed that some drugs can prevent or reduce neuronal death and slow the occurrence and progression of retinal degeneration by interfering with abnormal activation of microglia. It is expected to be a new choice for the treatment of hereditary retinal degeneration.