west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "睡眠分期" 15 results
  • Automatic Sleep Stage Classification Based on an Improved K-means Clustering Algorithm

    Sleep stage scoring is a hotspot in the field of medicine and neuroscience. Visual inspection of sleep is laborious and the results may be subjective to different clinicians. Automatic sleep stage classification algorithm can be used to reduce the manual workload. However, there are still limitations when it encounters complicated and changeable clinical cases. The purpose of this paper is to develop an automatic sleep staging algorithm based on the characteristics of actual sleep data. In the proposed improved K-means clustering algorithm, points were selected as the initial centers by using a concept of density to avoid the randomness of the original K-means algorithm. Meanwhile, the cluster centers were updated according to the 'Three-Sigma Rule' during the iteration to abate the influence of the outliers. The proposed method was tested and analyzed on the overnight sleep data of the healthy persons and patients with sleep disorders after continuous positive airway pressure (CPAP) treatment. The automatic sleep stage classification results were compared with the visual inspection by qualified clinicians and the averaged accuracy reached 76%. With the analysis of morphological diversity of sleep data, it was proved that the proposed improved K-means algorithm was feasible and valid for clinical practice.

    Release date:2016-10-24 01:24 Export PDF Favorites Scan
  • Automatic sleep staging algorithm for stochastic depth residual networks based on transfer learning

    The existing automatic sleep staging algorithms have the problems of too many model parameters and long training time, which in turn results in poor sleep staging efficiency. Using a single channel electroencephalogram (EEG) signal, this paper proposed an automatic sleep staging algorithm for stochastic depth residual networks based on transfer learning (TL-SDResNet). Firstly, a total of 30 single-channel (Fpz-Cz) EEG signals from 16 individuals were selected, and after preserving the effective sleep segments, the raw EEG signals were pre-processed using Butterworth filter and continuous wavelet transform to obtain two-dimensional images containing its time-frequency joint features as the input data for the staging model. Then, a ResNet50 pre-trained model trained on a publicly available dataset, the sleep database extension stored in European data format (Sleep-EDFx) was constructed, using a stochastic depth strategy and modifying the output layer to optimize the model structure. Finally, transfer learning was applied to the human sleep process throughout the night. The algorithm in this paper achieved a model staging accuracy of 87.95% after conducting several experiments. Experiments show that TL-SDResNet50 can accomplish fast training of a small amount of EEG data, and the overall effect is better than other staging algorithms and classical algorithms in recent years, which has certain practical value.

    Release date:2023-06-25 02:49 Export PDF Favorites Scan
  • A hybrid attention temporal sequential network for sleep stage classification

    Sleep stage classification is a necessary fundamental method for the diagnosis of sleep diseases, which has attracted extensive attention in recent years. Traditional methods for sleep stage classification, such as manual marking methods and machine learning algorithms, have the limitations of low efficiency and defective generalization. Recently, deep neural networks have shown improved results by the capability of learning complex pattern in the sleep data. However, these models ignore the intra-temporal sequential information and the correlation among all channels in each segment of the sleep data. To solve these problems, a hybrid attention temporal sequential network model is proposed in this paper, choosing recurrent neural network to replace traditional convolutional neural network, and extracting temporal features of polysomnography from the perspective of time. Furthermore, intra-temporal attention mechanism and channel attention mechanism are adopted to achieve the fusion of the intra-temporal representation and the fusion of channel-correlated representation. And then, based on recurrent neural network and inter-temporal attention mechanism, this model further realized the fusion of inter-temporal contextual representation. Finally, the end-to-end automatic sleep stage classification is accomplished according to the above hybrid representation. This paper evaluates the proposed model based on two public benchmark sleep datasets downloaded from open-source website, which include a number of polysomnography. Experimental results show that the proposed model could achieve better performance compared with ten state-of-the-art baselines. The overall accuracy of sleep stage classification could reach 0.801, 0.801 and 0.717, respectively. Meanwhile, the macro average F1-scores of the proposed model could reach 0.752, 0.728 and 0.700. All experimental results could demonstrate the effectiveness of the proposed model.

    Release date:2021-06-18 04:50 Export PDF Favorites Scan
  • Development and Design of Portable Sleep Electroencephalogram Monitoring System

    The growing rate of public health problem for increasing number of people afflicted with poor sleep quality suggests the importance of developing portable sleep electroencephalogram (EEG) monitoring systems. The system could record the overnight EEG signal, classify sleep stages automatically, and grade the sleep quality. We in our laboratory collected the signals in an easy way using a single channel with three electrodes which were placed in frontal position in case of the electrode drop-off during sleep. For a test, either silver disc electrodes or disposable medical electrocardiographic electrodes were used. Sleep EEG recorded by the two types of electrodes was compared to each other so as to find out which type was more suitable. Two algorithms were used for sleep EEG processing, i.e. amplitude-integrated EEG (aEEG) algorithm and sample entropy algorithm. Results showed that both algorithms could perform sleep stage classification and quality evaluation automatically. The present designed system could be used to monitor overnight sleep and provide quantitative evaluation.

    Release date: Export PDF Favorites Scan
  • Multi-modal physiological time-frequency feature extraction network for accurate sleep stage classification

    Sleep stage classification is essential for clinical disease diagnosis and sleep quality assessment. Most of the existing methods for sleep stage classification are based on single-channel or single-modal signal, and extract features using a single-branch, deep convolutional network, which not only hinders the capture of the diversity features related to sleep and increase the computational cost, but also has a certain impact on the accuracy of sleep stage classification. To solve this problem, this paper proposes an end-to-end multi-modal physiological time-frequency feature extraction network (MTFF-Net) for accurate sleep stage classification. First, multi-modal physiological signal containing electroencephalogram (EEG), electrocardiogram (ECG), electrooculogram (EOG) and electromyogram (EMG) are converted into two-dimensional time-frequency images containing time-frequency features by using short time Fourier transform (STFT). Then, the time-frequency feature extraction network combining multi-scale EEG compact convolution network (Ms-EEGNet) and bidirectional gated recurrent units (Bi-GRU) network is used to obtain multi-scale spectral features related to sleep feature waveforms and time series features related to sleep stage transition. According to the American Academy of Sleep Medicine (AASM) EEG sleep stage classification criterion, the model achieved 84.3% accuracy in the five-classification task on the third subgroup of the Institute of Systems and Robotics of the University of Coimbra Sleep Dataset (ISRUC-S3), with 83.1% macro F1 score value and 79.8% Cohen’s Kappa coefficient. The experimental results show that the proposed model achieves higher classification accuracy and promotes the application of deep learning algorithms in assisting clinical decision-making.

    Release date:2024-04-24 09:40 Export PDF Favorites Scan
  • Research of Electroencephalogram for Sleep Stage Based on Collaborative Representation and Kernel Entropy Component Analysis

    Sleep quality is closely related to human health. It is very important to correctly discriminate the sleep stages for evaluating sleep quality, diagnosing and analyzing the sleep-related disorders. Polysomnography (PSG) signals are commonly used to record and analyze sleep stages. Effective feature extraction and representation is one of the most important steps to improve the performance of sleep stage classification. In this work, a collaborative representation (CR) algorithm was adopted to re-represent the original extracted features from electroencephalogram signal, and then the kernel entropy component analysis (KECA) algorithm was further used to reduce the feature dimension of CR-feature. To evaluate the performance of CR-KECA, we compared the original feature, CR feature and readied CR feature (CR-PCA) after principal component analysis (PCA). The experimental results of sleep stage classification indicated that the CR-KECA method achieved the best performance compared with the original feature, CR feature, and CR-PCA feature with the classification accuracy of 68.74±0.46%, sensitivity of 68.76±0.43% and specificity of 92.19±0.11%. Moreover, CR algorithm had low computational complexity, and the feature dimension after KECA was much smaller, which made CR-KECA algorithm suitable for the analysis of large-scale sleep data.

    Release date: Export PDF Favorites Scan
  • Automatic sleep staging based on power spectral density and random forest

    The method of using deep learning technology to realize automatic sleep staging needs a lot of data support, and its computational complexity is also high. In this paper, an automatic sleep staging method based on power spectral density (PSD) and random forest is proposed. Firstly, the PSDs of six characteristic waves (K complex wave, δ wave, θ wave, α wave, spindle wave, β wave) in electroencephalogram (EEG) signals were extracted as the classification features, and then five sleep states (W, N1, N2, N3, REM) were automatically classified by random forest classifier. The whole night sleep EEG data of healthy subjects in the Sleep-EDF database were used as experimental data. The effects of using different EEG signals (Fpz-Cz single channel, Pz-Oz single channel, Fpz-Cz + Pz-Oz dual channel), different classifiers (random forest, adaptive boost, gradient boost, Gaussian naïve Bayes, decision tree, K-nearest neighbor), and different training and test set divisions (2-fold cross-validation, 5-fold cross-validation, 10-fold cross-validation, single subject) on the classification effect were compared. The experimental results showed that the effect was the best when the input was Pz-Oz single-channel EEG signal and the random forest classifier was used, no matter how the training set and test set were transformed, the classification accuracy was above 90.79%. The overall classification accuracy, macro average F1 value, and Kappa coefficient could reach 91.94%, 73.2% and 0.845 respectively at the highest, which proved that this method was effective and not susceptible to data volume, and had good stability. Compared with the existing research, our method is more accurate and simpler, and is suitable for automation.

    Release date:2023-06-25 02:49 Export PDF Favorites Scan
  • Study on the method of polysomnography sleep stage staging based on attention mechanism and bidirectional gate recurrent unit

    Polysomnography (PSG) monitoring is an important method for clinical diagnosis of diseases such as insomnia, apnea and so on. In order to solve the problem of time-consuming and energy-consuming sleep stage staging of sleep disorder patients using manual frame-by-frame visual judgment PSG, this study proposed a deep learning algorithm model combining convolutional neural networks (CNN) and bidirectional gate recurrent neural networks (Bi GRU). A dynamic sparse self-attention mechanism was designed to solve the problem that gated recurrent neural networks (GRU) is difficult to obtain accurate vector representation of long-distance information. This study collected 143 overnight PSG data of patients from Shanghai Mental Health Center with sleep disorders, which were combined with 153 overnight PSG data of patients from the open-source dataset, and selected 9 electrophysiological channel signals including 6 electroencephalogram (EEG) signal channels, 2 electrooculogram (EOG) signal channels and a single mandibular electromyogram (EMG) signal channel. These data were used for model training, testing and evaluation. After cross validation, the accuracy was (84.0±2.0)%, and Cohen's kappa value was 0.77±0.50. It showed better performance than the Cohen's kappa value of physician score of 0.75±0.11. The experimental results show that the algorithm model in this paper has a high staging effect in different populations and is widely applicable. It is of great significance to assist clinicians in rapid and large-scale PSG sleep automatic staging.

    Release date:2023-02-24 06:14 Export PDF Favorites Scan
  • 新生儿脑电图-睡眠分期及其应用

    近年来新生儿脑电图(EEG)对于评估脑功能的作用被逐渐认可,并在国内越来越多的医院开展,一般结果由医师阅图后凭经验主观判断,仅依靠定性EEG。而随着定量EEG研究的增多,依靠客观数据处理实现新生儿睡眠自动分期得以实现,并可以自动检出新生儿癫痫发作的时间段,节省人工阅图时间,辅助医师对结果做出判断。EEG-睡眠分期的分析应用广泛, 可以帮助更准确的识别新生儿脑病,评估新生儿神经功能和脑成熟度,提供一种研究新生儿大脑发育成熟的机制的方法。

    Release date:2017-11-27 02:36 Export PDF Favorites Scan
  • Study on Sleep Staging Methods Based on Heart Rate Variability Analysis

    In order to realize sleep staging automatically and conveniently, we used support vector machine (SVM) to analyze the correlation between heart rate variability and sleep stage experimentally. R-R intervals (RRIs) from 33 cases of sleep clinical data of Tianjin Thoracic Hospital were extracted and analyzed by principal component analysis (PCA). The SVM method was used to establish the model and predict the five sleep stages. The prediction accuracy of three-sleep-stage was higher than 80%, in contrast to sleep scoring annotations marked by physiological experts based on electroencephalogram (EEG) golden standard. The result showed that there was a good correlation between heart rate variability and sleep staging. This method is an important supplement to the traditional sleep staging method and has a great value for clinical application.

    Release date:2017-01-17 06:17 Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content