The chemical extraction method was used to prepare the rat uterine decellularized scaffolds, and to investigate the feasibility of preparing the extracellular matrix (ECM) hydrogel. The rat uterus were collected and extracted by 1%sodium dodecyl sulfate (SDS), 3% TritonX-100 and 4% sodium deoxycholate (SDC) in sequence. Scanning electron microscopy, histochemical staining and immunohistochemistry was used to assess the degree of decellularization of rat uterine scaffold. The prepared decellularized scaffold was digested with pepsin to obtain a uterine ECM hydrogel, and the protein content of ECM was determined by specific ELISA kit. Meanwhile, the mechanical characteristic of ECM hydrogel was measured. The results showed that the chemical extraction method can effectively remove the cells effectively in the rat uterine decellularized scaffold, with the ECM composition preserved completely. ECM hydrogel contains a large amount of ECM protein and shows a good stability, which provides a suitable supporting material for the reconstruction of endometrium in vitro.
OBJECTIVE: To explore the possibility of detergent acellularized porcine heart valve serving as a scaffold for tissue engineering valve. METHODS: The porcine aortic valves were acellularized by use of trypsin-EDTA. Triton X-100, RNase and DNase treatment. Biomechanical characteristics of fresh valves and acellularized valve were tested; also fresh valves, acellularized valve and valves treated with method of bioprothetic treatment were implanted subcutaneously in rats; frequently seeded with bovine aortic endothelial cells(BAECs), and then cultured for 7 days. RESULTS: The acellularization procedure resulted in complete removal of the cellular components while the construction of matrix was maintained. The matrix could be successfully seeded with in vitro expanded BAECs, which formed a continuous monolayer on the surface. There is no significant difference of PGI2 secretion of BAECs between cells seeded onto the acellular leaflets and that onto the wells of 24-wells plate (P gt; 0.05). CONCLUSION: Acellularied porcine aortic valve can be applied as a scaffold to develop tissue engineering heart valve.
Objective To compare the effect of fabricating decellularized scaffold of homograft bioprosthetic tube valved (HBTV) with two kinds of cell detergents and to provide a homograft bioprosthetic scaffold for fabrication of tissueengineering heart valve (TEHV). Methods The active cells in the HBTV, which conserved by liquid nitrogen, were decellularized by low osmotic pressure of Tris buffer, in which containing sodium dodecylsulphate (SDS) and deoxycholic acid (DOA) respectively. The leaflets or aortic wall was fixed with fixative and stained with hematoxylin and eosin, collagen fibers or elastic fibers for observation and photographs by light microscope or by scanning electron microscope (SEM) after decellularized. Results When the leaflets of HBTV were incubated togetherwith 0.03% SDS or 0.5% DOA of Tris buffer respectively for 48 hours, the activeendothelial cells (ECs) in the leaflets were not only decellularized completely, but also reserved the collagen fibers or elastic fibers integrally, which is two of the main components of extracellular matrix (ECM). A part of fibroblast inthe center leaflets was reserved. The morphologic structure of leaflets after decellularized was not significantly different from that before decellularized. The concentration of SDS was increased to 0.1% when decellularized the cells of aortic wall, but DOA was still kept 0.5%. Conclusion The better decellularizedscaffold of HBTV obtained was disposed by 0.03%-0.1% SDS or 0.5% DOA, which wasadvantageous to adhesiveness and amplification of implantation cells on the decellularized scaffold of HBTV in order that HBV reendothelialized or for the TEHVfabricated in vitro.
Polydimethylsiloxane (PDMS) and hydroxyapatite (HA) were combined in our laboratory to fabricate an elastic porous cell scaffold with pore-forming agent, and then the scaffold was used as culture media for rat bone marrow derived mesenchymal stem cells (rBMSCs). Different porous materials (square and circular in shape) were prepared by different pore-forming agents (NaCl or paraffin spheres) with adjustable porosity (62%-76%). The HA crystals grew on the wall of hole when the material was exposed to SBF solutions, showing its biocompatibility and ability to support the cells to attach on the materials.
Objective To explore the feasibility of tissue-engineered heart valve (TEHV) reconstructed on acellularized porcine aortic valve and rabbit bone marrow stromal cells (BMSCs) in vitro. Methods Acellularized was performed in porcine aortic valve by the detergent and enzymatic extraction process . Morphological and biomechanical properties were compared between the decellularized scaffolds and the fresh valves. Rabbit BMSCs were seeded on the scaffolds. The TEHV were analyzed by light microscopy, electron microscopy and immunohistochemistry. Results Almost complete removal of the cellular components and soluble protein of valves were observed , while the construction of matrix was properly maintained. Biomechanical tests demonstrated no statistically significant change in the breaking intensity (642 ± 102 g/mm2 vs. 636 ± 127g/mm2) and breaking extensibility (62. 2%± 18. 1% vs. 54. 4%±16. 0%) in the porcine values before and after decellularization. Subsequent seeding with rabbit BMSCs on the matrix was so successful that the surface of the scaffold had been covered with a continuous monolayer cells through light microscopy and electron microscopy. Positive of α-smooth muscle actin and negative of CD31 were observed after rabbit BMSCs seeded on the matrix through immunohistochemistry. Conclusion It is feasible to reconstruct TEHV in vitro on acellularized porcine aortic valve scaffold and rabbit BMSCs.
In the past fifty more years, many research results have been achieved in the field of artificial esophagus which has been a major subject of surgical study on esophagus. Unfortunately,a very satisfactory artificial esophagus has not been found due to lack of proper artificial materials and problems of postoperative complications which results in great hindrance to applying them to clinical purpose. The current research focuses on artificial esophaguses constructed with acellular matrix as well as constructed through tissue engineering,furthermore,how to prevent and cure postoperative complications is still the main difficulty. This paper gives an overview of the recent study results,points in dispute, present status of research and the recent advances, and an overview to the future of artificial esophagus.
【Abstract】 Objective To design a novel small-cal iber vascular graft using a decellularized allogeneic vascularscaffold pre-loaded with bFGF. Methods The decellularized canine common carotid were obtained by a detergent-enzymatic procedure, then the scaffolds were covalently l inked with heparin and pre-loaded with bFGF, the amount of binding bFGF and releasing curve were assayed by ELISA. Canine BMSCs expanded in vitro were seed on the scaffolds to observe the effects of binding bFGF on prol iferation. Both bFGF pre-loaded and non-pre-loaded decellularized grafts were implanted in canines as carotid artery interposition for 8 weeks, the patency was examined by digital subtraction angiography and histological method. Results Histology and electron microscopic examination of the decellularized scaffolds showed that cellular components were removed completely and that the extracellular matrix structure remained intact. The amount of binding bFGF positively related to the concentration of bFGF. There was a significant difference in the amount of binding bFGF between two different scaffoldsthroughout all bFGF concentrations(P lt; 0.05), and up to 100 ng/mL, the local and sustained release of bFGF from the heparin treated scaffolds were assayed up to 20 days. Additionally, MTT test showed the bFGF-preloaded scaffolds significantly enhanced the prol iferation of seeded BMSCs in vitro compared with non-bFGF-preloaded scaffolds at 3 days after seeding and thereafter(P lt; 0.01). Furthermore, in vivo canine experiments revealed that all 8 bFGF-pre-loaded scaffolds remained patent after 8 weeks of implantation, and host cell l ined the lumen and populated the wall. Only 1 non-bFGF-pre-loaded scaffold was patent, and the other 7 grafts were occluded because of thrombsus formation. Conclusion This study provides a new strategy to develop a small diameter vascular graft with excellent biocompatibil ity and high patency rate.