Objective To investigate the correlation of expression of Fas/Fas ligand (FasL) and apoptosis in retinoblastoma (RB). Methods The expression and distribution of Fas/FasL were detected by using immunohistochemical staining in 32 cases of RB. Light microsc opy (32 cases), electron microscopy (4 cases) and TdT mediated biotin-d UTP nick-end labeling (TUNEL) (12 cases) were used to study apoptosis in RB. Results Apoptotic RB cells mostly located at RB regress area. Chromatin margination and apoptotic bodies were found in RB. TUNEL posi tive labeling cells especially located in tumor regress area. Positive immunola beling for Fas and FasL was found in all RB specimens. There was a highly signi ficant and positive correlation between the expression of Fas/FasL and apoptotic indices (AI) (Plt;0.01 or 0.001). Conclusion The results suggest that apoptotic cell death is prevalent in RB and it may be one type of the most dominant cell death. Fas system may play an important role in oncogenesis and progression of RB, and the up-regulation of Fas system expression might induce RB cell apoptosis. (Chin J Ocul Fundus Dis, 2001,17:21-23)
ObjectiveTo understand the current progress of programmed cell death in the pathogenesis of acute pancreatitis, and to provide reference for the pathogenesis and treatment of acute pancreatitis.MethodThe research progress of acute pancreatitis and programmed cell death in recent years was reviewed by reading relevant literatures at home and abroad in recent years.ResultsProgrammed cell death was defined as controlled cell death performed by intracellular procedures, including apoptosis, autophagy, programmed necrosis, and coronation. The pattern of death of pancreatic acinar cells mainly includes apoptosis and programmed necrosis. Although the pathogenesis of acute pancreatitis had not yet been fully clarified, it was known that through the study of programmed cell death, it could help us to understand the pathogenesis and pathogenesis of acute pancreatitis and provide more effective treatment methods.ConclusionsProgrammed cell death is very important for acute pancreatitis. The mechanism of programmed cell death in acute pancreatitis is necessary for the treatment and prevention of it.
Objective To investigate the damage to the retinal cells and apoptosis of retinal cells of rats after ischemia-reperfusion insult. Methods The retinal ischemia-reperfusion model was developed by increasing intraocular pressure to 109725 mm Hg in rat eyes. Morphological changes of the rat eyes were observed by means of routine histopathology with HE staining. Apoptosis of the retina was assayed by both DNA fragmentation gel-electrophoresis and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labelling (TUNEL). Results Compared with the normal control, no histopathological changes were revealed in the rat retinas 30 min after the ischemia and then reperfued for 24 h or 48 h. Retinal ganglion cell layer (RGL) and inner plaxiform layer (IPL) of the retina were observed, however, to become significantly thinner 60 min after the ischemia and then reperfued for 24 h or 48 h. Together with the pathological changes DNA ladder pattern was detected in the same group of the rats. Further, immunochemical stain of the eye demonstrated that TUNEL positive cells were localized in RGL and IPL of the retina. Conclusion Ischemia-reperfusion insult of the eye may remarkably damage the retina of the rat eye. The damage to the retinal cells is mainly localized within RGL and IPL and apoptosis is the important mechanism of the retinal disorder. (Chin J Ocul Fundus Dis, 2002, 18: 296-298)
Objective To investigate the influnce of L-arginine (L-Arg) and L-nitro-arginine-methyl-ester(L-NAME) to purified retinal ganglion cells(RGCs) apoptosis of rats cultured in different consistencies of L-Arg and L-NAME. Method RGCs from Sprague Dawley (SD) neonatal rats(postnatal 1~5 day) were cultured in assimilative culture solution in vitro and RGCs were purified by Thy1.1 with sheep anti rat FITC monoclonal antibody. RGCs were cultured in different consistencies of L-Arg and L-NAME: 1×10-6, 1×10-5,1×10-4, 1×10-3, 1×10-2 and 1×10-1 mol/L for 24 hours and 48 hours, respectively. The changes of bcl-2, bax and p53 mRNA in RGCs in different consistencies of L-Arg and L-NAME were demonstrated qualitatively and quantitatively by in situ hybridization, and their apoptosis were detected by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling(TUNEL) method, respectively. Results After 24 hours in vitro, the purification rate of RGCs in the experiment arrived at 97 %. After 48 hours, there were a few apoptotic cells expression in the control group. Apoptotic cells expression in L-Arg≥1×10-3 mol/L and L-NAME≥1×10-1 mol/L groups increased that had a significant difference with the control group (Plt;0.05). In the group of L-Arg≥1×10-3 mol/L and L-NAME≥1×10-1 mol/L, the expression of bcl-2 mRNA in RGCs became weaker and weaker as the consistencies were increased, but the expression of bax and p53 mRNA in RGCs became higher and higher and had a significant difference with control group (Plt;0.05). Conclusion Lower concentration of L-Arg can promote the growth of purified RGCs in vitro and higher concentration of L-Arg can promote the apoptosis of RGCs. (Chin J Ocul Fundus Dis, 2002, 18: 137-139)
Pyroptosis is a newly discovered form of cell death. Through the activation of inflammasome complexes, pyroptosis induces the production of interleukin (IL) -1β and IL-18, and the osmotic swelling of cells, thus induces cellular rupture and death. It plays a role in the pathological process of a variety of human diseases. The death of retinal cells including photoreceptor cells and retinal pigment epithelium (RPE) cells is the main reason leading to visual dysfunction in the pathogenesis in ocular fundus diseases. Researches have demonstrated that pyroptosis is closely related to the onset and progression of various retinal diseases. In age-related macular degeneration, pyroptosis directly causes apoptosis of RPE cells and upregulation of pro-inflammatory factors, enhancing toxic effect of lipofuscin. For retinitis pigmentosa, pyroptosis is the leading manner of death of secondary cone photoreceptor cells. In cytomegalovirus retinitis, pyroptosis is the main responding way to infection. This review presented the molecular mechanism of pyroptosis and its role in age-related macular degeneration, retinitis pigmentosa and cytomegalovirus retinitis and other retinal diseases.
Objective To observe the effect of exogenous basic fibrob last growth factor (bFGF) on apoptosis of cultured human retinal pigment epithelial (RPE) cells exposed to visible light,and determine the role of bFGF, fibroblast growth factor receptor 1 (FGFR1),bcl-2 and caspase-3. Methods 2000±500) lx cold white light was used. Exogenous bFGF was utilized during culture. Annexin annexin V-fluoresce in isothiocyanate/propidium iodium (V-FITC/PI) labeling,flow cytometry, Immunocytochemical staining, enzyme associated absorb examing and reverse transcriptional polymerase chain reaction (RT-PCR) were used to determine the apoptosis, the expression levels of bFGF, FGFR1, bcl-2, as well as the activity of caspase-3. Results No protective effect of bFGF was observed under the concentration 5 ng/ml.A significant inhibition of apoptosis was found in 10 ng/ml and 20 ng/ml groups (P<0.05). The upregulation of bcl-2 was observed in bFGF (10 ng/ml, 20 ng/ml) protreated groups(P<0.01).Compared to no light exposure group,all light exposure groups (including bFGF pro-treated) had higher endogenous bFGF and FGFR1 levels (P <0.05), and the increase was concentration dependent.The bFGF and FGFR1 levels were higher in exogenous bFGF applied (gt;5 ng/ml) groups than light exposure groups(P<0.05). The caspase-3 activity was significantly inhibited in bFGF (10 ng/ml) pro-treated groups. Conclusions Human RPE cells exposed to visible light were rescued by application of exogenous bFGF in vitro.The probable protective mechanism of bFGF partly is directly binding to FGFR1 or potentiating endogenous bFGF autocrine loop,to upregulate bcl-2 and to inhibit caspase-3 activation. (Chin J Ocul Fundus Dis,2003,19:24-28)
Objective To further investigate pathologic mechanism of retinal phototrauma. Methods Twenty Wistar rats were divided into control and experimental groups.Their eyes were extracted in 12,24 and 36 hours after light exposure.HE stained retina samples were examined and TDT-mediated dUTP nick end labelling(TUNEL)method was employed to distinguish apoptotic cells. Results After 12-hour light exposure,slight vesiculation was observed in the rod outer segment of the retinas.After 24-hour light exposure,the outer nuclear layer showed predominant fractured and condensed nuclei and fragmented DNA.After 36-hour light exposure,the rod outer and inner segments were lysed and most of the nuclei in the outer nuclear layer were disappeared. Conclusions Apoptosis of photoreceptor cell is one of the important mechanisms which cause experimental retinal photoinjury of rats. (Chin J Ocul Fundus Dis, 1999, 15: 167-169)
Neuropathic pain (NP) is a pathological state caused by damage or disease to the somatosensory nervous system. Programmed cell death (PCD) is an orderly process of cell death regulated by both intrinsic signals and external stimuli. In recent years, an increasing number of studies have shown that PCD plays a key regulatory role in the pathogenesis of NP. This article reviews the molecular mechanisms of various types of PCD and their specific roles in NP, in order to provide new research directions for the prevention, diagnosis, and treatment of NP.