west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "脑机接口" 48 results
  • Electroencephalogram Feature Selection Based on Correlation Coefficient Analysis

    In order to improve the accuracy of classification with small amount of motor imagery training data on the development of brain-computer interface (BCI) systems, we proposed an analyzing method to automatically select the characteristic parameters based on correlation coefficient analysis. Throughout the five sample data of dataset Ⅳa from 2005 BCI Competition, we utilized short-time Fourier transform (STFT) and correlation coefficient calculation to reduce the number of primitive electroencephalogram dimension, then introduced feature extraction based on common spatial pattern (CSP) and classified by linear discriminant analysis (LDA). Simulation results showed that the average rate of classification accuracy could be improved by using correlation coefficient feature selection method than those without using this algorithm. Comparing with support vector machine (SVM) optimization features algorithm, the correlation coefficient analysis can lead better selection parameters to improve the accuracy of classification.

    Release date: Export PDF Favorites Scan
  • Design and preliminary application of outdoor flying pigeon-robot

    Control at beyond-visual ranges is of great significance to animal-robots with wide range motion capability. For pigeon-robots, such control can be done by the way of onboard preprogram, but not constitute a closed-loop yet. This study designed a new control system for pigeon-robots, which integrated the function of trajectory monitoring to that of brain stimulation. It achieved the closed-loop control in turning or circling by estimating pigeons’ flight state instantaneously and the corresponding logical regulation. The stimulation targets located at the formation reticularis medialis mesencephali (FRM) in the left and right brain, for the purposes of left- and right-turn control, respectively. The stimulus was characterized by the waveform mimicking the nerve cell membrane potential, and was activated intermittently. The wearable control unit weighted 11.8 g totally. The results showed a 90% success rate by the closed-loop control in pigeon-robots. It was convenient to obtain the wing shape during flight maneuver, by equipping a pigeon-robot with a vivo camera. It was also feasible to regulate the evolution of pigeon flocks by the pigeon-robots at different hierarchical level. All of these lay the groundwork for the application of pigeon-robots in scientific researches.

    Release date:2023-02-24 06:14 Export PDF Favorites Scan
  • Multi-scale feature extraction and classification of motor imagery electroencephalography based on time series data enhancement

    The brain-computer interface (BCI) based on motor imagery electroencephalography (MI-EEG) enables direct information interaction between the human brain and external devices. In this paper, a multi-scale EEG feature extraction convolutional neural network model based on time series data enhancement is proposed for decoding MI-EEG signals. First, an EEG signals augmentation method was proposed that could increase the information content of training samples without changing the length of the time series, while retaining its original features completely. Then, multiple holistic and detailed features of the EEG data were adaptively extracted by multi-scale convolution module, and the features were fused and filtered by parallel residual module and channel attention. Finally, classification results were output by a fully connected network. The application experimental results on the BCI Competition IV 2a and 2b datasets showed that the proposed model achieved an average classification accuracy of 91.87% and 87.85% for the motor imagery task, respectively, which had high accuracy and strong robustness compared with existing baseline models. The proposed model does not require complex signals pre-processing operations and has the advantage of multi-scale feature extraction, which has high practical application value.

    Release date:2023-08-23 02:45 Export PDF Favorites Scan
  • Evaluation methods for the rehabilitation efficacy of bidirectional closed-loop motor imagery brain-computer interface active rehabilitation training systems

    The bidirectional closed-loop motor imagery brain-computer interface (MI-BCI) is an emerging method for active rehabilitation training of motor dysfunction, extensively tested in both laboratory and clinical settings. However, no standardized method for evaluating its rehabilitation efficacy has been established, and relevant literature remains limited. To facilitate the clinical translation of bidirectional closed-loop MI-BCI, this article first introduced its fundamental principles, reviewed the rehabilitation training cycle and methods for evaluating rehabilitation efficacy, and summarized approaches for evaluating system usability, user satisfaction and usage. Finally, the challenges associated with evaluating the rehabilitation efficacy of bidirectional closed-loop MI-BCI were discussed, aiming to promote its broader adoption and standardization in clinical practice.

    Release date:2025-06-23 04:09 Export PDF Favorites Scan
  • A Novel Method of Multi-channel Feature Extraction Combining Multivariate Autoregression and Multiple-linear Principal Component Analysis

    Brain-computer interface (BCI) systems identify brain signals through extracting features from them. In view of the limitations of the autoregressive model feature extraction method and the traditional principal component analysis to deal with the multichannel signals, this paper presents a multichannel feature extraction method that multivariate autoregressive (MVAR) model combined with the multiple-linear principal component analysis (MPCA), and used for magnetoencephalography (MEG) signals and electroencephalograph (EEG) signals recognition. Firstly, we calculated the MVAR model coefficient matrix of the MEG/EEG signals using this method, and then reduced the dimensions to a lower one, using MPCA. Finally, we recognized brain signals by Bayes Classifier. The key innovation we introduced in our investigation showed that we extended the traditional single-channel feature extraction method to the case of multi-channel one. We then carried out the experiments using the data groups ofⅣ_ⅢandⅣ_Ⅰ. The experimental results proved that the method proposed in this paper was feasible.

    Release date:2021-06-24 10:16 Export PDF Favorites Scan
  • Research on the Methods for Electroencephalogram Feature Extraction Based on Blind Source Separation

    In the present investigation, we studied four methods of blind source separation/independent component analysis (BSS/ICA), AMUSE, SOBI, JADE, and FastICA. We did the feature extraction of electroencephalogram (EEG) signals of brain computer interface (BCI) for classifying spontaneous mental activities, which contained four mental tasks including imagination of left hand, right hand, foot and tongue movement. Different methods of extract physiological components were studied and achieved good performance. Then, three combined methods of SOBI and FastICA for extraction of EEG features of motor imagery were proposed. The results showed that combining of SOBI and ICA could not only reduce various artifacts and noise but also localize useful source and improve accuracy of BCI. It would improve further study of physiological mechanisms of motor imagery.

    Release date: Export PDF Favorites Scan
  • A Feature Extraction Method for Brain Computer Interface Based on Multivariate Empirical Mode Decomposition

    This paper presents a feature extraction method based on multivariate empirical mode decomposition (MEMD) combining with the power spectrum feature, and the method aims at the non-stationary electroencephalogram (EEG) or magnetoencephalogram (MEG) signal in brain-computer interface (BCI) system. Firstly, we utilized MEMD algorithm to decompose multichannel brain signals into a series of multiple intrinsic mode function (IMF), which was proximate stationary and with multi-scale. Then we extracted and reduced the power characteristic from each IMF to a lower dimensions using principal component analysis (PCA). Finally, we classified the motor imagery tasks by linear discriminant analysis classifier. The experimental verification showed that the correct recognition rates of the two-class and four-class tasks of the BCI competitionⅢand competitionⅣreached 92.0% and 46.2%, respectively, which were superior to the winner of the BCI competition. The experimental proved that the proposed method was reasonably effective and stable and it would provide a new way for feature extraction.

    Release date: Export PDF Favorites Scan
  • Applications, industrial transformation and commercial value of brain-computer interface technology

    Brain-computer interface (BCI) is a revolutionary human-computer interaction technology, which includes both BCI that can output instructions directly from the brain to external devices or machines without relying on the peripheral nerve and muscle system, and BCI that bypasses the peripheral nerve and muscle system and inputs electrical, magnetic, acoustic and optical stimuli or neural feedback directly to the brain from external devices or machines. With the development of BCI technology, it has potential application not only in medical field, but also in non-medical fields, such as education, military, finance, entertainment, smart home and so on. At present, there is little literature on the relevant application of BCI technology, the current situation of BCI industrialization at home and abroad and its commercial value. Therefore, this paper expounds and discusses the above contents, which are expected to provide valuable information for the public and organizations, BCI researchers, BCI industry translators and salespeople, and improve the cognitive level of BCI technology, further promote the application and industrial transformation of BCI technology and enhance the commercial value of BCI, so as to serve mankind better.

    Release date:2022-06-28 04:35 Export PDF Favorites Scan
  • Application of Semi-supervised Sparse Representation Classifier Based on Help Training in EEG Classification

    Electroencephalogram (EEG) classification for brain-computer interface (BCI) is a new way of realizing human-computer interreaction. In this paper the application of semi-supervised sparse representation classifier algorithms based on help training to EEG classification for BCI is reported. Firstly, the correlation information of the unlabeled data is obtained by sparse representation classifier and some data with high correlation selected. Secondly, the boundary information of the selected data is produced by discriminative classifier, which is the Fisher linear classifier. The final unlabeled data with high confidence are selected by a criterion containing the information of distance and direction. We applied this novel method to the three benchmark datasets, which were BCIⅠ, BCIⅡ_Ⅳ and USPS. The classification rate were 97%,82% and 84.7%, respectively. Moreover the fastest arithmetic rate was just about 0.2 s. The classification rate and efficiency results of the novel method are both better than those of S3VM and SVM, proving that the proposed method is effective.

    Release date: Export PDF Favorites Scan
  • A spatial-temporal hybrid feature extraction method for rapid serial visual presentation of electroencephalogram signals

    Rapid serial visual presentation-brain computer interface (RSVP-BCI) is the most popular technology in the early discover task based on human brain. This algorithm can obtain the rapid perception of the environment by human brain. Decoding brain state based on single-trial of multichannel electroencephalogram (EEG) recording remains a challenge due to the low signal-to-noise ratio (SNR) and nonstationary. To solve the problem of low classification accuracy of single-trial in RSVP-BCI, this paper presents a new feature extraction algorithm which uses principal component analysis (PCA) and common spatial pattern (CSP) algorithm separately in spatial domain and time domain, creating a spatial-temporal hybrid CSP-PCA (STHCP) algorithm. By maximizing the discrimination distance between target and non-target, the feature dimensionality was reduced effectively. The area under the curve (AUC) of STHCP algorithm is higher than that of the three benchmark algorithms (SWFP, CSP and PCA) by 17.9%, 22.2% and 29.2%, respectively. STHCP algorithm provides a new method for target detection.

    Release date:2022-04-24 01:17 Export PDF Favorites Scan
5 pages Previous 1 2 3 4 5 Next

Format

Content