west china medical publishers
Keyword
  • Title
  • Author
  • Keyword
  • Abstract
Advance search
Advance search

Search

find Keyword "脑源性神经营养因子" 17 results
  • 重组逆转录病毒脑源性神经营养因子在小鼠胚胎细胞中的表达

    Release date:2016-09-02 05:48 Export PDF Favorites Scan
  • Experimental Research of Laryngeal Muscle and Pathophysiology of Recurrent Laryngeal Nerve after Unilateral Recurrent Laryngeal Nerve Transection for Rats

    ObjectiveThe aim of this study was to evaluate the repair effect of spontaneous reinnervation in rats underwent recurrent laryngeal nerve (RLN) transection. MethodsThirty male Wistar rats (340-360 g) were divided into experiment group (n=15) and blank control group (n=15), and then 15 rats of these 2 groups were divided into 3 time point groups equally:4 weeks group, 8 weeks group, and 12 weeks group. Fifteen rats of experiment group underwent right RLN transection with excision of a 5 mm segment, and other 15 rats of blank control group exposed RLN only, without transection. Grade of vocalization, maximum angle of arytenoid cartilage, axon number of distal part of RLN, and expression of the brain-derived neurotrophic factor (BDNF) in right thyroarytenoid muscle were evaluated at different time points, including 4, 8, and 12 weeks after operation. ResultsGrade of vocalization, maximum angle of arytenoid cartilage, axon numbers of distal part of RLN, and the expression of BDNF in the right thyroarytenoid muscle of experiment group were all lower than those corresponding index of blank control group (P < 0.05), and these indexes of experiment group were restored gradually with time, but failed to reach normal level during the observed time. ConclusionsEven though spontaneous reinnervation is presented after RLN injury, but the effect is unsatisfactory.

    Release date:2016-12-21 03:35 Export PDF Favorites Scan
  • Promotion of transplanted collagen scaffolds combined with brain-derived neurotrophic factor for axonal regeneration and motor function recovery in rats after transected spinal cord injury

    ObjectiveTo evaluate the effect of the combination of collagen scaffold and brain-derived neurotrophic factor (BDNF) on the repair of transected spinal cord injury in rats.MethodsThirty-two Sprague-Dawley rats were randomly divided into 4 groups: group A (sham operation group), T9, T10 segments of the spinal cord was only exposed; group B, 4-mm T9, T10 segments of the spinal cord were resected; group C, 4-mm T9, T10 segments of the spinal cord were resected and linear ordered collagen scaffolds (LOCS) with corresponding length was transplanted into lesion site; group D, 4-mm T9, T10 segments of the spinal cord were resected and LOCS with collagen binding domain (CBD)-BDNF was transplanted into lesion site. During 3 months after operation, Basso-Beattie-Bresnahan (BBB) locomotor score assessment was performed for each rat once a week. At 3 months after operation, electrophysiological test of motor evoked potential (MEP) was performed for rats in each group. Subsequently, retrograde tracing was performed for each rat by injection of fluorogold (FG) at the L2 spinal cord below the injury level. One week later, brains and spinal cord tissues of rats were collected. Morphological observation was performed to spinal cord tissues after dehydration. The thoracic spinal cords including lesion area were collected and sliced horizontally. Thoracic spinal cords 1 cm above lesion area and lumbar spinal cords 1 cm below lesion area were collected and sliced coronally. Coronal spinal cord tissue sections were observed by the laser confocal scanning microscope and calculated the integral absorbance (IA) value of FG-positive cells. Horizontal tissue sections of thoracic spinal cord underwent immunofluorescence staining to observe the building of transected spinal cord injury model, axonal regeneration in damaged area, and synapse formation of regenerated axons.ResultsDuring 3 months after operation, the BBB scores of groups B, C, and D were significantly lower than those of group A (P<0.05). The BBB scores of group D at 2-12 weeks after operation were significantly higher than those of groups B and C (P<0.05). Electrophysiological tests revealed that there was no MEP in group B; the latencies of MEP in groups C and D were significantly longer than that in group A (P<0.05), and in group C than in group D (P<0.05). Morphological observation of spinal cord tissues showed that the injured area of the spinal cord in group B extended to both two ends, and the lesion site was severely damaged. The morphologies of spinal cord tissues in groups C and D recovered well, and the morphology in group D was closer to normal tissue. Results of retrograde tracing showed that the gray matters of lumbar spinal cords below the lesion area in each group were filled with FG-positive cells; in thoracic spinal cords above lesion sites, theIA value of FG-positive cells in coronal section of spinal cord in group A was significantly larger than those in groups B, C, and D (P<0.05), and in groups C and D than in group B (P<0.05), but no significant difference was found between groups C and D (P>0.05). Immunofluorescence staining results of spinal cord tissue sections selected from dorsal to ventral spinal cord showed transected injured areas of spinal cords which were significantly different from normal tissues. The numbers of NF-positive axons in lesion center of group A were significantly larger than those of groups B, C, and D (P<0.05), and in groups C and D than in group B (P<0.05), and in group D than in group C (P<0.05).ConclusionThe combined therapeutic approach containing LOCS and CBD-BDNF can promote axonal regeneration and recovery of hind limb motor function after transected spinal cord injury in rats.

    Release date:2018-05-30 04:28 Export PDF Favorites Scan
  • PRELIMINARY STUDY ON EFFECTS OF HUMAN BRAIN-DERIVED NEUROTROPHIC FACTOR GENE-MODIFIED BONE MARROW MESENCHYMAL STEM CELLS BY INTRAVENOUS TRANSPLANTATION ON STRUCTURE AND FUNCTION OF RAT INJURED SPINAL CORD

    Objective To transplant intravenously human brain-derived neurotrophic factor (hBDNF) genemodified bone marrow mesenchymal stem cells (BMSCs) marked with enhanced green fluorescent protein (EGFP) to injured spinal cord of adult rats, then to observe the viabil ity of the cells and the expressions of the gene in spinal cord, as well as theinfluence of neurological morphological repairing and functional reconstruction. Methods Ninety-six male SD rats weighing (250 ± 20) g were randomly divided into 4 groups: hBDNF-EGFP-BMSCs transplantation group (group A, n=24), Ad5-EGFPBMSCs transplantation group (group B, n=24), control group (group C, n=24), and sham operation group (group D, n=24). In groups A, B, and C, the spinal cord injury models were prepared according to the modified Allen method at the level of T10 segment, and after 3 days, 1 mL hBDNF-EGFP-BMSCs suspension, 1 mL Ad5-EGFP-BMSCs suspension and 1 mL 0.1 mol/L phosphate buffered sal ine (PBS) were injected into tail vein, respectively; in group D, the spinal cord was exposed without injury and injection. At 24 hours after injury and 1, 3, 5 weeks after intravenous transplantation, the structure and neurological function of rats were evaluated by the Basso-Beattie-Bresnahan (BBB) score, cortical somatosensory evoked potential (CSEP) and transmission electron microscope. The viabil ity and distribution of BMSCs in the spinal cord were observed by fluorescent inverted phase contrast microscope and the level of hBDNF protein expression in the spinal cord was observed and analyzed with Western blot. Meanwhile, the expressions of neurofilament 200 (NF-200) and synaptophysin I was analyzed with immunohi stochemistry. Results After intravenous transplantation, the neurological function was significantly improved in group A. The BBB scores and CSEP in group A were significantly higher than those in groups B and C (P lt; 0.05) at 3 and 5 weeks. The green fluorescence expressions were observed at the site of injured spinal cord in groups A and B at 1, 3, and 5 weeks. The hBDNF proteinexpression was detected after 1, 3, and 5 weeks of intravenous transplantation in group A, while it could not be detected in groups B, C, and D by Western blot. The expressions of NF-200 and synaptophysin I were ber and ber with transplanting time in groups A, B, and C. The expressions of NF-200 and synaptophysin I were best at 5 weeks, and the expressions in group A were ber than those in groups B and C (P lt; 0.05). And the expressions of NF-200 in groups A, B, and C were significantly ber than those in group D (P lt; 0.05), whereas the expressions of synaptophysin I in groups A, B, and C were significantly weaker than those in group D (P lt; 0.05). Ultramicrostructure of spinal cords in group A was almost normal. Conclusion Transplanted hBDNF-EGFP-BMSCs can survive and assemble at the injured area of spinal cord, and express hBDNF. Intravenous implantation of hBDNF-EGFP-BMSCs could promote the restoration of injured spinal cord and improve neurological functions.

    Release date:2016-08-31 05:48 Export PDF Favorites Scan
  • 靶向脑源性神经营养因子/酪氨酸激酶 B 信号通路对癫痫的抑制

    创伤性脑损伤(Traumatic brain injury,TBI)和癫痫持续状态(Status epilepticus,SE)皆与人类癫痫的发生发展密切相关。虽病因不同,但目前的研究表明,这些损伤后癫痫发生的分子机制趋于一致。其中一个机制涉及脑源性神经营养因子(Brain-derived neurotrophic factor,BDNF)及其高亲和力受体酪氨酸激酶 B(Tropomyosin related kinase B,TrkB)。文章总结了 BDNF / TrkB 信号通路在癫痫发展中所起的病理生理学作用。轴突横断模型和 SE 动物模型分别模拟了人类 TBI 和 SE 后诱发的癫痫,在这两种动物模型的研究基础上,讨论了靶向 BDNF/TrkB 信号通路以减少癫痫发作及其导致的神经损伤的策略。

    Release date:2020-07-20 08:13 Export PDF Favorites Scan
  • 脑源性神经营养因子对小鼠视网膜Müller细胞谷氨酸转运体表达的调控

    Release date:2016-09-02 05:41 Export PDF Favorites Scan
  • Protection of retinal ganglion cells from optic nerve injury by brainderived neurotrophic factor transfected through microbubble contrast agent into the retina and visual cortex

      Objective To observe the protective effect of ultrasound microbubble contrast agentmediated transfection of brain-derived neurotrophic factor(BDNF) into the retina and visual cortex on retinal ganglion cells (RGC) after optic nerve injury. Methods A total of 88 male Sprague-Dawley (SD) rats were randomly divided into normal group (group A, eight rats), sham operation group (group B, 16 rats), control group (group C, 16 rats), eyes transfection group (group D, 16 rats), brain transfection group (group E, 16 rats), combined transfection group (group F, 16 rats). The optic nerve crush injury was induced, and then the groups B to F were divided into one-week and two-week after optic nerve injury subgroup with eight rats each, respectively. The rats in group B and C underwent intravitreal and visual cortex injection with phosphate buffered solution respectively. The rats in group D and E underwent intravitreal and visual cortex injection with the mixture solution of microbubbles and BDNF plasmids respectively. The rats in group F underwent both intravitreal and visual cortex injection with the mixture solution of microbubbles and BDNF plasmids at the same time. The ultrasound exposure was performed on the rats in group D to F after injection with the mixture solution of microbubbles and BDNF plasmids. One and two weeks after optic nerve injury, RGC were retrogradely labeled with Fluorogold; active caspase-3 protein was observed by immunohistochemistry and the N95 amplitude was detected by pattern electroretinogram (PERG). Results Golden fluorescence can be observed exactly in labeled RGC in all groups,the difference of the number of RGC between the six groups and ten subgroups were significant(F=256.30,65.18;P<0.01). Active caspase-3 in ganglion cell layer was detected in group C to F, but not in group A and B. The difference of the N95 amplitude between the six groups and ten subgroups were significant(F=121.56,82.38;P<0.01).Conclusion Ultrasound microbubble contrast agent-mediated BDNF transfection to the rat retina and visual cortex can inhibit the RGC apoptosis after optic nerve injury and protect the visual function.

    Release date:2016-09-02 05:37 Export PDF Favorites Scan
  • Construction, identification and application of fusion plasmid of brainderived neurotrophic factorgreen fluorescent protein

    Objective To construct expression plasmid of the fusion protein of brainderived neurotrophic factor (BDNF)green fluorescent protein (GFP), and observe its characteristics.Methods BDNF cDNA segment was inserted into plasmid pcDNA3.1/ NT-GFP-TOPO and in the same reading frame with GFP. After verified by sequencing, the BDNFGFP plasmid was transferred into cultured Schwann cells by electroporation. And the expression of BDNFGFP fusion protein was observed by immunohistochemistry and Western blotting. The neuralprotective function of the fusion protein was evaluated by transferring the plasmid into adult rat retinas with transected optic nerve.Results The sequence of BDNFGFP plasmid was verified correctly by autosequencing. The results of Western blotting showed that the BDNF-GFP fusion protein expressed a brand with the relative molecular mass of 41times;103. Seven days after the optic nerve was transected, the number of survival retinal ganglion cells (RGC) in BDNF-GFP group and GFP group was (1201plusmn;286) and(482plusmn;151)cells/mm2, respectively; and the survival rate was (51.39plusmn;12.24)% and (20.62plusmn;6.46)% , respectively. Twentyeight days after the optic nerve was transected, the number of survival RGC in the two groups was (715plusmn;71) and (112plusmn;24)cells/mm2, respectively; the survival rate was(30.59plusmn;3.04)% and (4.79plusmn;1.03)% respectively. The differences of the survival rate of RGC between the two groups were significant (t=3.144,11.378;Plt;0.01).Conclusion BDNF-GFP fusion plasmid can express a fusion protein which emit green fluorescence and has the biological activity of BDNF.

    Release date:2016-09-02 05:43 Export PDF Favorites Scan
  • WONOEP评价:癫痫的分子和细胞生物标记物

    外周生物标志物具有许多潜在用途,可用于癫痫的治疗、预测、预后和药物安全监视作用。目前为止,虽然多个候选标记物在研究中,但还没有单一的外周生物标记物已经证明有效。文章中讨论的重点领域,包括炎症、血脑屏障功能障碍、氧化还原改变、代谢、激素和生长因子。

    Release date:2017-05-24 05:46 Export PDF Favorites Scan
  • EFFECT OF CARBOXYMETHYLATED CHITOSAN ON APOPTOSIS AND EXPRESSION OF BRAIN DERIVED NEUROTROPHIC FACTOR AND GLIAL CELL LINE DERIVED NEUROTROPHIC FACTOR IN OXIDATIVE STRESS INDUCED Schwann CELLS IN VITRO

    ObjectiveTo investigate the protective effects of carboxymethylated chitosan (CMCS) on oxidative stress induced apoptosis of Schwann cells (SCs), and the expressions of brain derived neurotrophic factor (BDNF) and gl ial cell line derived neurotrophic factor (GDNF) in oxidative stress induced SCs. MethodsTwenty-four 3-5 days old Sprague Dawley rats (weighing 25-30 g, male or female) were involved in this study. The bilateral sciatic nerves of rats were harvested and SCs were isolated and cultured in vitro. The purity of SCs was identified by immunofluorescence staining of S-100. SCs were treated with different concentrations of hydrogen peroxide (H2O2, 0.01, 0.10, and 1.00 mmol/L) for 3, 6, 12, and 24 hours to establ ish the apoptotic model. The cell counting kit 8 (CCK-8) and flow cytometry analysis were used to detect the cell viabil ity and apoptosis induced by H2O2, and the optimal concentration and time for the apoptotic model of SCs were determined. The 2nd passage SCs were divided into 5 groups and were treated with PBS (control), with 1.00 mmol/L H2O2, with 1.00 mmol/L H2O2+50 μg/mL CMCS, with 1.00 mmol/L H2O2+100 μg/mL CMCS, and with 1.00 mmol/L H2O2+200 μg/mL CMCS, respectively. After cultured for 24 hours, the cell viabil ity was assessed by CCK-8, cell apoptosis was detected by flow cytometry analysis, the expressions of mRNA and protein of BDNF and GDNF were detected by real-time quantitative PCR and Western blot. ResultsThe immunofluorescence staining of S-100 indicated the positive rate was more than 95%. CCK-8 and flow cytometry results showed that H2O2 can inhibit the proliferation of SCs and induce the SCs apoptosis with dose dependent manner, the effect was the most significant at 1.00 mmol/L H2O2 for 24 hours; after addition of CMCS, SCs exhibited the increased proliferation and decreased apoptosis in a dose dependent manner. Real-time quantitative PCR and Western blot analysis showed that 1.00 mmol/L H2O2 can significantly inhibit BDNF and GDNF expression in SCs when compared with control group (P<0.05), 50-200 μg/mL CMCS can reverse the oxidative stress-induced BDNF and GDNF expression in SCs in a dose dependent manner, showing significant difference compared with control group and 1.00 mmol/L H2O2 induced group (P<0.05). There were significant differences among different CMCS treated groups (P<0.05). ConclusionCMCS has the protective stress on oxidative stress induced apoptosis of SCs, and may promote the BDNF and GDNF expressions of neurotrophic factors in oxidative stress induced SCs.

    Release date: Export PDF Favorites Scan
2 pages Previous 1 2 Next

Format

Content