Objective To investigate the operative techniques and cl inical results of sural neurocutaneous vascular flap pedicled on the relatively higher and main perforating branch of peroneal artery in repairing small and medium-sized soft tissue defects in ankle. Methods From July 2004 to February 2007, 14 patients (9 males and 5 females, aged 19-53 years) withsmall and medium-sized soft tissue defects in ankle were treated, including 4 cases of skin necrosis caused by surgery for achilles tendon rupture, 3 soft tissue defects due to car accident, 2 crush injury due to fall ing heavy objects, 2 chronical infectious ulcer, 2 skin necrosis cuased by surgery for calcaneus fracture and 1 melanoma resection in heel. Ranging from 4 cm × 2 cm to 9 cm × 5 cm and combing with exposure of either tendon or bone, the defects were in ankle areas (12 cases) and weight-bearing heel (2 cases). The time from injury to hospital ization was 12 days to 13 months, except 3 cases of emergency hospital ization. After thorough debridement, the sural neurocutaneous vascular flaps (13 cm × 5 cm - 36 cm × 6 cm ) pedicled on the perforating branch of peroneal artery was harvested to repair the defects. The donor sites were sutured directly. Results Postoperatively all the flaps survived, and all the donor sites and wounds healed by first intention. Over a 7-23 month follow-up period, the texture, appearance and color of the flaps in all cases were good, with two-point discrimination of 7-12 mm.The function of ankle obtained satisfactory recovery with normal in-shoe gait. Conclusion With a rel iable blood supply, simple operative procedure, sound repair of wound and satisfactory recovery of l imb function, the sural neurocutaneous vascular flap pedicled on the relatively higher and main perforating branch of peroneal artery is appl icable for the repair of small and medium-sized defects in the ankle and weight-bearing area of heel, especially for patients who have no satisfactory perforating branch in lower position.
Objective To explore the effectiveness of changeable cross-leg style sural neurovascular flap in repairing contralateral fairly large soft tissue defects on dorsum of forefoot. Methods Between June 2006 and June 2015, 12 patients with fairly large soft tissue defect on dorsum of forefoot were treated. There were 8 males and 4 females, with an average age of 35.6 years (range, 18-57 years). Defects were caused by traffic accident injury in 4 cases, machine crush injury in 3 cases, and heavy object crush injury in 3 cases, with a median disease duration of 11 days (range, 5 hours to 28 days) in the 10 cases; the defect cause was atrophic scar in 2 cases, with disease duration of 2 years and 3 years respectively. The wound size of soft tissue ranged from 6.2 cm×4.1 cm to 11.5 cm×7.4 cm; combined injuries included tendon exposure in all cases and bone exposure in 6 cases. The changeable cross-leg style sural neurovascular flaps were used to repair defects. The width and length of flap pedicle were increased. The cross-leg position was maintained with the elastic net bandage. The size of flaps was 16 cm×7 cm to 21 cm×11 cm, with a pedicle of 8-16 cm in length and 5-6 cm in width. Results After operation, 10 flaps survived, and wound healed by first intention. Extravasated blood occurred at the flap edge in 2 cases and was cured after symptomatic treatment. No pressure sore occurred. All patients were followed up 3-24 months (mean, 7 months). The appearance and function of the affected legs were good, and the flaps had soft texture and normal color. Conclusion Changeable cross-leg style sural neurovascular flap can achieve good effectiveness in repairing fairly large soft tissue defect on dorsum of forefoot. Some drawbacks of single cross-leg style can be avoided.
Objective To summarize the cl inical experience of repairing soft tissue defect in dorsal pedis with reversed fascia pedicled peroneal perforating branch sural neurofasciocutaneous flap, and to explore surgery matters needingattention and measures to prevent flap necrosis. Methods Between August 2000 and April 2009, 31 patients with soft tissue defects in dorsal pedis were treated with reversed fascia pedicled peroneal perforating branch sural neurofasciocutaneous flaps. There were 23 males and 8 females with a median age of 34 years (range, 3-65 years). Defects were caused by traffic accident in 20 cases, by machine in 2 cases, and by crush in 2 cases. The time from injury to admission was 1-32 days (mean, 15 days). And 6 cases had chronic ulcer or unstable scar excision with disease duration of 6 months to 10 years, and 1 case had squamous carcinoma with disease duration of 5 months. The wounds were located in medial dorsal pedis in 12 cases and lateral dorsal pedis in 19 cases; including 14 wounds near the middle metatarsal and 17 wounds beyond the middle metatarsal (up to the metatarsophalangeal joint in 10 cases). All cases accompanied with bone or tendon exposure. Five cases accompanied with long extensor muscle digits tendon rupture and defect, 1 case accompanied with talus fracture, 1 case accompanied with talus fracture and third metatarsal fracture. The size of the wounds ranged from 6.0 cm × 4.5 cm to 17.0 cm × 10.0 cm. The size of the flaps ranged from 8.0 cm × 5.5 cm to 20.0 cm × 12.0 cm. The donor sites were resurfaced by skin graft. Results Seventeen flaps survived uneventfully, wounds healed by first intention. Distal epidermal or superficial necrosis occurred in 6 flaps at 5-12 daysafter operation, wounds healed by dressing change or skin graft. Distal partial necrosis occurred in 8 flaps (7 in medial dorsal pedis and 1 in lateral dorsal pedis) at 7-14 days after operation, wounds healed by skin graft in 3 cases, by secondary suture in 3 cases, by local flap rotation in 1 case, and by cross leg flap in 1 case. All skin grafts at donor sites survived uneventfully, wounds healed by first intention. Twenty-nine patients were followed up 6-29 months (mean, 19 months). The appearance was sl ightly overstaffed, but wearing shoe function and gait were normal. The texture and color of the flaps in all cases were good. There was no pigmentation and suppuration relapse. There was neither ankle plantar flexion deformity nor hammer toe deformity in 5 cases accompanied with long extensor muscle digits tendon rupture and defect. All fractures healed at 3 months after operation in 2 cases. Conclusion The reversed fascia pedicled peroneal perforating branch sural neurofasciocutaneous flaps are suitable to repair most soft tissue defects in lateral dorsal pedis. When the flaps are used to repair soft tissue defects in medial dorsal pedis, avoiding tension in flaps and fascia pedicles should be noted so as to improve flap survival.