Objective To report the clinical result of the improvedisland skin flap with distallybased sural nerve nutrient vessels in repairing skin defect in the heel, ankle or foot. Methods From August2004 to April 2005, 15 patients with skin defect in the heel, ankle or foot at distal part were treated by the improved island skin flap with distally-based of sural nerve nutrient vessels. Of 15 flaps, 12 were simplex flaps and 3 were complex flaps. These flap area ranged from 7 cm×6 cm to 11×8 cm. The donor sites were sutured directly and covered with free flap. Results All flaps survived without flap swelling and disturbance of blood circulation. The wounds of donor and recipient sites healed by first intention. The followup period ranged from 3 to 6 months. The texture of flap was soft and the color of flap was similar to that of normal skin. The foot function was excellent. Conclusion The improved island skin flap with distally-based sural nerve nutrient vessels is an ideal skin flap for repairing skin defect in the heel, ankle or foot distal part in clinical. The operation is simple and need not to anastomose blood vessel.
Objective To investigate the clinical significance of the distally-based sural musculocutaneous flap for the treatment of chronic calcaneal osteomyelitis. Methods From January 2002 to October 2005, 7 patients (4 males, 3 females; age range, 15-68 years ) were treated with the distallybased sural musculocutaneous flap, who had chronic calcanealosteomyelitis after calcaneal fracture. After the radical debridement for all the nonviable and poorly vascularized tissues, all the chronic calcaneal osteomyelitis patients, who had suffered from open calcaneal fracture or closed calcaneal fracture, were treated with the open reduction, the internal fixation, and thebone graft. The ulcer lasted for 3-12 months before diagnosis of osteomyelitis. The musculocutaneous flaps ranged in size from 8 cm×4 cm to 12 cm×7 cmand the muscle flaps ranged from 4 cm×3 cm to 6 cm×5 cm. The donor defects were closed primarily in 5 patients and were resurfaced with the splitthicknessskin graft in 2 patients. Results All the musculocutaneous flaps survived completely and all the wounds healed smoothly. All the patients followed up for 2-6 months had no recurrence of osteomyelitis or return to their preoperative ambulatory status.Conclusion It is feasible to use the distallybased sural musculocutaneous flap for treatment of chronic calcaneal osteomyelitis.
Objective To explore the application of the improved operative technique and clinical results of sural nerve nutritional vessel axial flap repairing the soft tissue defects of the lower leg,the ankle and the foot. Methods From January 1999 to Novenber 2004,the modified flaps were applied in 22 cases of soft tissue defect on the basis of anatomy of the intermusclar septum perforating branches of peroneal artery and the sural nerve nutritional vessel.There were 14 males and 8 females. Their ages ranged from 5 to 54 years.According to the position and size of the soft tissue defects, the sural nerve nutritional vessel flap pedicled with the perforating branch of the peroneal artery in the lower leg were desingned and obtained to repair the soft tissue defects of the lower leg,the ankle and the foot.The flap size ranged from 13cm×12cm to 30cm×20cm. The vessel pedicle of perforating branches ranged from 1.7cm to 3cm.The distribution of the vessel pedicle of perforating branches ranged from4.5cm to 8cm on the lateral malleolus.The diameters of vessel ranged from 1mm to 1.2mm. Results The flap pedicle with the terminal branch of the peroneal artery was used in 13 cases, the other branches were used in 9 cases. Among of 22 cases,the sural nerve were anastomosed with the acceptor sensory nerve in 4 cases. The skin sense were satisfactory after 1 year of operationnd 2-point discrimination was 10-13mm. All flaps survived completely in 22 cases. The outline andfunction were satisfactory during 6-18 months follow-up. Conclusion The blood supply of this flap is reliable. Flap elevation is easy. The size of flap is large enough to repair skin defects of the lower leg, the ankle and the foot.
Objective To establ ish the experimental animal model of perforator sural neurocutaneous flap for laying a foundation of further study on its physiology and haemodynamics. Methods Thirty-five New Zealand rabbits were divided into four groups, weighing 2.5-3.0 kg and being male or female. In group A (n=5), vivisection was performed to observe thestarting point and arrangement of sural nerve, its concomitant vessels, posterior tibial artery and perforating vessel. In groups B and C (n=5), red latex and gelatin-lead oxide were injected into the concomitant arteries of sural nerve and the posterior tibial arteries respectively to observe their arrangement, the diameter and anatomasis. In group D, forty neurocutaneous flaps based on single perforator were elevated in the twenty rabbits with a size of 7 cm × 1 cm and a pedicle of 0.5 cm. The colour and condition of flaps were observed. Results The sural nerve originated from posterior tibial nerve, passed through the lateral head of the gastrocnemius at site of the popl iteal fossa, descended obl iquely to exterior, entered in the deep fascia at about (5.42 ± 0.15) cm above lateral malleolus, and descended vertically to lateral malleolus. Its concomitant artery originated from deep femoral artery with an initial diameter of (0.73 ± 0.11) mm and extended to the lateral malleolus along the sural nerve. A perforating branch of posterior tibial artery at the position of the calcaneus originated from the midpoint of the l ine connecting between the medial malleolus and the calcaneus with an initial diameter of (0.45 ± 0.01) mm. The perforating branch traversed the calcaneus to the region of the lateral malleolus, and anastomosed to the concomitant artery of the sural nerve, forming a vascular plexus around the sural nerve. In group D, two cases were excluded due to infection. The survival rate was 78.0% ± 1.5% in other 38 flaps 10days after operation. Conclusion The perforator based sural neurocutaneous flap in rabbit is a good experimental model,which has stable anamatic features and rel iable blood distribution.
Objective To investigate the origin of small saphenous vein of distally-based of sural nerve nutrient vessels flap and its clinical application. Methods The origins of nutrient vessels of small saphenousvein and communicating branches of superficial-deep vein were observed on specimens of 30 adult cadaveric low limbs by perfusing red gelatin to dissect the artery. Results The nutrient vessels of small saphenous vein originated from the heel lateral artery, the terminal perforator branches of peroneal artery and intermuscular septum perforating branches of peroneal artery. There were 2 to 5 branches ofsuch distally-based perforating branches whose diameters ranged from 0.6 to 1.0 mm. Those perforating branches included fascia branches, cutaneous branches nerve and vein nutrient branches. Those nutrient vessels formed a longitudinalvessel chain of sural nerve shaft, vessel chain of vein side and vessel networkof deep superficial fascia. The small saphenous vein had 1 to 2 communicating branches of superficial-deep vein whose diameter was 1.7±0.5 mm, 3.4±0.9 cm to the level of cusp of lateral malleolus, and converged into the fibular vein. Conclusion Distally-based sural nerve, small saphenous vein, and nutrient vessles of fascia skin have the same region. The communicating branches of superficial-deep vein is 3 to 4 cm to the level of cusp lateral malleolus. These communicating branches could improve the venousdrainage of the flap.
Objective To investigate the clinical efficiency of thedistally based sural island flap and myofasciocutaneous flap in reconstruction of defect and osteomyelitic cavity of the ankle and foot. Methods From June 1997 to October 2004, 21 patients with soft tissue defects and osteomyelitis in the ankle and foot were treated with the distally based sural island flap and myofasciocutaneous flap. There were 20 males and 1 female aging from 6 to 78 years. The defect was caused by soft tissue defect trauma(18 cases) and electrical injury ( 3 cases). Among 21 patients, 17 were treated with island flaps, 4 by the myofasciocutaneous flap. The size of flaps ranged from 4 cm×5cm to 16 cm×22 cm. The donorsites were closed directly in 4 cases. Results The flaps completely survived in 21 cases and healing by first intention was achieved. After a follow-up of 36 months, no complication occurred. The color and texture of the flaps were good. The appearance and the function were satisfactory. Conclusion Distally basedsural flap is a reliable flap. This flap has rich blood supply without sacrifice of major arteries. Flap elevation is easy. It is very useful in repairing large soft tissue defects of the lower leg, the ankle and the foot, especially inrepairing deep soft tissue defects and osteomyelitic cavities .
Objective To investigate the anatomic foundation of using main branch of posterior femoral nerve to restore the sensation function of distal basedsural island flap. Methods Thirty cases of adult human cadaver legs fixed by 4%formaldehyde were used. Anatomical investigation of the posterior femoral nerves of lower legs was conducted under surgical microscope to observe their distribution, branches and their relationship with small saphenous vein. Nerve brancheswith diameter more than 0.1 mm were dissected and accounted during observation.The length and diameter of the nerves were measured. Results The main branch of posterior femoral nerve ran downwards from popliteal fossa within superficial fascia along with small saphenous vein. 70% of the main branch of the posterior femoral nerves lay medially to small saphenous vein, and 30% laterally. They wereclassified into 3 types according to their distribution in lower legs: typeⅠ (33.3%) innervated the upper 1/4 region of lower leg (region Ⅰ), type Ⅱ (43.3%) had branches in upper 1/2 region (region Ⅰ and Ⅱ), and type Ⅲ (23.3%) distributed over the upper 3/4 region (region Ⅰ, Ⅱ and Ⅲ). In type Ⅱ, the diameter of the main branches of posterior femoral nerves in the middle of popliteal tossa was 10±04 mm and innervated the posterior upper-middle region (which was the ordirary donor region of distal based sural island flaps) of lower legs with 2.0±0.8 branches, whose diameter was 0.3±0.2 mm and length was 3.5±2.7 mm. The distance between the end of these branches and small saphenous vein was 0.8±0.6 mm. In type Ⅲ, their diameter was 1.2±0.3 mm and innervated the posterior upper-middle region of lower legs with 3.7±1.7 branches, whose diameter was 0.4±0.1 mm and length was 3.7±2.6 mm. The distancebetween the end of these branches and small saphenous vein was 0.8±0.4 mm. Conclusion 66.6% of human main branch of posteriorfemoral nerves (type Ⅱ and type Ⅲ) can be used to restore the sensation of distal based sural island flap through anastomosis with sensor nerve stump of footduring operation.
OBJECTIVE: To sum up the application experience of the sural nerve island flap pedicled with the collateral vessels. METHODS: From 1997, the retrograde-flow sural nerve island flaps pedicled with collateral vessels were performed to repair the soft tissues defects of the shank in 3 cases, ankle in 3 cases and foot in 8 cases. RESULTS: Twelve flaps were survived, one flap was partially necrosed and one flap was necrosed. Among them, 10 wounds healed by first intention, 3 cases were healed after changing dressing and the one necrosed flap was repaired by free flap transplantation. Nine cases were followed up for 3 to 21 months and had fine appearance and function. The flap texture was similar to normal skin, the sensation of flap partially recovered after 6 months. CONCLUSION: The flap has more reliable blood supply and great rotation arc, it is easy to resect with little injury. It is excellent for repairing the soft tissues defect in the anterior leg, ankle and proximal half of foot. It is more significant while the main blood vessels are damaged.