ObjectiveTo investigate the impact of L-Phenylalanine on the efficiency of retinal pigment epithelial (RPE) cell derivation from human embryonic stem cells (hESCs) and explore the underlying mechanisms. MethodsH1 hESCs were routinely cultured with mTeSR medium and divided into control and experimental groups. When cells reached over-confluence, spontaneous differentiation was triggered using 10% KSR differentiation medium without bFGF. L-Phenylalanine (0.2 mmol/L) was supplemented in the experimental group from the 3rd week. The expression of RPE markers and Wnt signaling components in the two groups was detected by Real time-RCR, Western blot and Flow cytometry analyses. Purified hESC-RPE cells and PBS were injected into the subretinal space of sodium iodine-induced retinal degeneration rats separately. Retinal function was assessed by ERG 6 weeks after the transplantation. ResultsOn the 7th week, much more pigment cell clumps appeared in the experimental group compared to the control group. Within these areas there were monolayer hexagonal RPE cells full of pigment granules. The experimental group showed significantly higher expression of Pax6, MITF, Tyrosinase, RPE65, Wnt3a, Lef1 and Tcf7 genes than the control group (P < 0.01). Higher expression level of MITF and RPE65 proteins and higher percentage of RPE65 (+) cells (P < 0.01) were detected in the experimental group. 6 weeks after sub-retinal transplantation of hESC-RPE cells, the amplitudes of a-b wave in the transplanted eyes were significantly higher than those in the control eyes (P < 0.01) at the stimulus intensity of 3.0 cd·s/m2. ConclusionsL-Phenylalanine effectively promoted the differentiation of embryonic stem cells into retinal pigment epithelial cells, and its impacts on the Wnt/β-catenin signaling pathway may partially explain the underlying mechanisms. Subretinal transplantation of hESC-RPE remarkably improved the retinal functions of retinal degenerative animal models.
Objective To observe the clinical features of congenital hypertrophy of retinal pigment epithelium (CHRPE). Methods The clinical data of 13 CHRPE patients including visual acuity, slit-lamp microscope examination, indirect ophthalmoscope examination and fundus fluorescein angiography (FFA) were retrospectively analyzed. The patients, 9 males and 4 females, with the mean age of 27.8 years. Results All patients were unilateral, without systemic diseases and no subjective symptoms in majority. Only 30.77% of initial diagnosis was correct, other diagnosis include choroidal nevi, old chorioretinopathy or no diagnosis. The round or oval black lesion was found in ocular fundus of all patients, 7.69% was located on the optic disk, 46.15% was located on the inferior temporal retina, 30.77% was located on the superior temporal retina, 15.39% was located on the inferior nasal retina. 92.31% was pigmented CHRPE and 7.69% was non-pigmented CHRPE. FFA showed blocked fluorescence and transmitted fluorescence in the lesion, few eyes were found dilated capillary vessel and fluorescent leakage on the late stage of FFA, most eyes had normal retinal vessels. Conclusion The isolated CHRPE is round or oval black lesion in ocular fundus which lack of subjective symptoms, mostly located on the peripheral retina; the FFA characteristics showed blocked fluorescence and transmitted fluorescence, and CHRPE often misdiagnosed as other disease, it should be combine the ocular fundus manifestation with the FFA to diagnose properly.
OBJECTIVE:To observe the effect of dexamethasone to intracellular free Ca2+ of frozen RPE cells. METHODS:The cultured human RPE cells were frozen for 30s at --70deg;C. The RPE cells were loaded with Fura-2/AM and analyzed using a digital imaging microscopy system,the effect of dexamethasone to intracellular free Ca2+ was measured at a serial concentration of 40, 60,100,150,200mu;g/ml. RESULTS:The concentration of intracellular free Ca in frozen human RPE cells was increased to 18.6%~29.8% by dexamethasone at concenlration of 40mu;g/ml~60mu;g/ml,while was decreased to 28.4%~35.2% at 150mu;g/ml~200mu;g/ml. CONCLUSIONS:Effect of dexamethasone showed two aspects of effect to frozen cultured human RPE ceils,that it was inhibitor at high concentration and stimulator at low concentration (Chin J Ocul Fundus Dis,1997,13: 86-88)
Objective To detect the effects of cytokines on the expression of early growth response gene-1 (Egr-1) in cultured human retinal pigment epithelial (RPE) cells. Methods Immunofluorescence staining, Western blotting and reverse transcription polymerase chain reaction (RT-PCR) were used to detect and quantitatively analyze the expression of Egr-1 protein and mRNA in cultured human RPE cells which were exposed to stimulants, including 20 mu;g/ml lipopolysaccharide (LPS), 40 ng/ml tumor necrosis factor (TNF)-alpha;, 10 U/ml interferon (IFN)gamma;, 30% supernatant of monocyte/macrophage strain (THP1 cells) and the vitreous humor from healthy human eyeballs, for 0, 10, 20, 30, 40 and 60 minutes, respectively. Results The RPE cells stimulated for 0 minute revealed faint green fluorescence of Egr-1 in the cytoplasm. With exposure to the stimulants, the expressionof Egr-1 increased obviously and b green fluorescence was found in cytoplasm in some nuclei of RPE cells. Compared with the untreated RPE cells, after stimulated by 20 mu;g/ml LPS, 40 ng/ml TNFalpha;, 10 U/ml IFNgamma;, 30% supernatant of THP-1 cells and the vitreous humor, the approximate ultimate amplitudes of Egr-1 mRNA enhanced 1.9, 1.3, 14, 1.2, and 1.4 times, respectively; the greatest amplitudes of Egr-1 protein increased 3.4, 1.2, 1.7, 32, and 1.3 times, respectively. Conclusion LPS, TNF-alpha;, IFN-gamma;, supernatant of THP-1 cells and the vitreous humor can upregulate the expression of Egr-1 mRNA and protein in cultured human RPE cells, and induce its nuclear transposition, which suggests the activation of Egr-1.
Objective To examine the influence of retinal pigment epithelium(RPE) cells on antigen-specific activatedlymphocytes in vitro,and to explore the role of RPE cells in the immune privilege of the eye. Methods Co-culture systems of RPE cells with antigen-specific T lymphocyte lines and resting T lymphocytes were established in vitro.Induction of apoptosis was detected by genomic DNA electrophoresis,DNA in situ end-labelling and flow cytometry. Results RPE cells induced apoptosis in antigen-specific activated T lymphocytes. 24 hours after culture,the signs of apoptosis appeared in lymphocytes co-incubated with RPE cells.As time of co-culture went on,the number of apoptosic cells increased.Quantitative analysis of apoptosic cells showed that apoptosic cells accounted for 5.95% after 24 hours, 9.38% after 48 hours,and 17.95% after 72 hours.In contrast,RPE cells induced few apoptosis in resting T lymphocytes. Conclusions These results suggest that RPE cells possess the ability to induce the apoptosis of invading lymphocytes. This phenomenon serves as a restrain mechanism of immune response and may be of vital importance in the maintenance of immune privilege in posterior segment of eye and in the protection of eye from the damage of immunogenic inflammation. (Chin J Ocul Fundus Dis, 1999, 15: 241-244)
Objective To explore the expression and activation of transcription factor E2F1 in cultured human retinal pigment epithelium (RPE) cells. Methods Cultured human RPE cells were divided into two groups after synchronization: one was cultured in Dulbecco′s modified Eagle′s medium (DMEM) without serum; the other was cultured in DMEM supplemented with 20% serum of newborn calf. The expressions of E2F1 protein in two groups were detected by Western blot analysis. The E2F1-DNA binding activities were measured by gel mobility-shift assay(EMSA). Results E2F1 protein of 60 000 molecular weight was detected in the nuclear extract of human RPE cells, and serum stimulation could increase its expression(P<0.001). EMSA exhibited the increased binding activity of E2F1 in the serum-stimulated RPE cells with DNA. Conclusions E2F1 is expressed in the nuclei of human RPE cells. Serum stimulation can increase its protein expression as well as binding activity, so as to play a regulation role of gene transcription. (Chin J Ocul Fundus Dis, 2002, 18: 224-226)